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Preface

In one sense, the idea for this book started 15 years ago with a six-hour
meeting of the two authors between planes at the O’Hare Hilton. At this
meeting, maximum entropy and empirical likelihood principles were the
major areas of discussion. Since that time the two of us have worked together
and have only looked forward. Asaresult, Econometric Foundationsappeared
in 2000, and a range of related information theoretic articles emerged in the
last decade. Pieces of some of these articles appear in this book.

This book was a pleasure to write. We hope the reader will feel our
enthusiasm in entering the information theoretic world and leaving behind
many conventional econometric methods that we spent a good part of our
lives learning.

To write this book, we had the help of many colleagues. Several years of
work with Amos Golan provided a base for dealing with pure and noisy
inverse problems and the maximum entropy principle. Douglas Miller was
involved in this early work and also worked with us on the Econometric Foun-
dations book. Marian Grendar, a longtime colleague of one of the authors,
worked with us concerning the theoretical underpinning of information
theoretic methods and read and commented on many of the chapters in
this book. Art Owen was always available to discuss issues relating to the
empirical likelihood approach to estimation and inference. Wendy Tam
Cho was a creative partner in solving a range of important pure inverse
applied problems. To a large group of colleagues, too numerous to mention,
we express our warm thanks and appreciation and hope they have been
appropriately acknowledged in references throughout the book.

For a book to reach the publication stage, two persons are necessary in
addition to the author. One involves a person that takes incoherent words
and other symbols and converts them to a working copy. In this context,
Danielle Engelhardt, with intelligence, good humor, and word-processing

XV



Xvi Preface

skills, worked with us to get each chapter just right and to turn it into a
beautiful copy. A second person is an editor who understands the subject
matter and shares your goals. In Scott Parris, we found such a person and a
full partner every step of the way. For the two authors, this has been a joint
venture; the order of the names has only alphabetical significance.

George G. Judge
Ron C. Mittelhammer
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ONE

Econometric Information Recovery

1.1 Book Objectives and Problem Format

The objectives of this book are to

i) develop a plausible basis for reasoning in situations involving
incomplete-partial econometric model information,
ii) develop principles and procedures for learning or recovering infor-
mation from a sample of indirect noisy data, and
iii) provide the reader with a firm conceptual and empirical under-
standing of basic information theoretic econometrics models and
methods.

What makes the econometric information recovery process interesting is
that

* economic-behavioral systems, such as physical and biological systems,
are statistical in nature;

* the conceptual econometric model contains parameters and noise
components that are unknown and unobserved and, indeed, not sub-
ject to direct observation or measurement;

e the recovery of information on the unknown parameters or compo-
nents requires, for analysis purposes, the use of indirect noisy mea-
surements based on observable data and the solution of an inverse
problem that maps the indirect noisy observations, into information
on the unknown model and its unobservable components;

* the models may be ill-posed or, in the context of traditional procedures,
may be undetermined and the solution not amenable to conventional
rules of logic or to being written in closed form.

These problems, taken either individually or in some combination, repre-
sent the intellectual challenge of modern econometric analysis and research.

1



2 Econometric Information Recovery

Building on the productive efforts of our precursors in the areas of theoreti-
cal economics and inferential statistics, we hope, in this book, to provide an
operational understanding of a rich set of information theoretic methods
that may be used in theoretical and applied econometrics.

Econometrics is a work in progress. Anyone who doubts this should
review a sampling of econometric books starting in the mid-1930s and
map the development of econometrics over time. Advances in econometric
methodology have been substantial in both content and number, and they
continue at a geometric rate.

Information theoretic methods, which have a base in statistical mechanics
in physics, have developed in econometrics over the last two decades. In this
book we provide a conceptual and empirical understanding of information
theoretic methods in some of the major areas of econometrics. Because
in econometrics, and in other subject-matter areas, we must work with
indirect noisy observations and ill-posed econometric models, traditional
econometric methods may not be applicable in answering many of the
quantitative questions we wish to ask.

To be a bit more specific, as noted previously, in econometric analyses the
unknown and uncontrolled components of the econometric model cannot
generally be observed directly. Thus, the analyst must use indirect noisy
observations based on observable data to recover information relative to
these unknown and unobservable components. This situation is associated
with a concept in systems and information theory called the inverse prob-
lem, which is the problem of recovering information about unknown and
uncontrolled components of a model from indirect noisy observations. The
adjective indirect refers to the fact that although the observed data are con-
sidered to be directly influenced by the values of model components, the
observations are not themselves the direct values of these components but
only indirectly reflect the influence of the components. Thus, the relation-
ship characterizing the effect of unobservable components on the observed
data must be somehow inverted to recover information about the unobserv-
able model components from the data-observations. Because econometric
relations generally contain a systematic and a noise component, the prob-
lem of recovering information about unknowns and unobservables (0, €)
from sample observations (y, x) within the context of an econometric
model Y = (X, 0, ¢) is referred to as an inverse problem with noise or as a
stochastic inverse problem. A solution to this inverse problem is of the gen-
eral form (y, x) = (0, €). Because most econometric analyses are of this
form, it would seem natural that solution methods should be used that are
consistent with the underlying information recovery problem.



1.2 Organization of the Book 3

1.2 Organization of the Book

To establish notation and connect with reader knowledge, the book starts
with the specification and analysis of the simplest parametric and semipara-
metric probability models. The book is organized in five parts.

Part1is concerned with estimation and inference procedures for paramet-
ric and semiparametric linear probability models. In Chapter 2, a notational
basis for the econometric models ahead is specified. Estimation and infer-
ence is considered for both parametric and semiparametric models and the
idea of extremum estimation is introduced. In Chapter 3, estimation and
inference methods are introduced for obtaining information on parameters
that are functionally related to moments of the data sampling distribution.
The focus is on just and overdetermined cases and the chapter starts with an
examination of both the method of moments and the generalized method of
moments. Finally, the concept of estimating equations, which subsumes the
moment equation approaches, is introduced. With an eye to the chapters
ahead, we note how extremum estimation relates to the aforementioned
methods.

In Part II, we leave the traditional econometric world and focus on
econometric models in the form of ill-posed stochastic inverse problems,
where information recovery is based on indirect noisy observations and
asymptotic considerations come into play. In Chapter 4, a nonparametric
stochastic linear inverse problem (econometric model) is defined and a
solution (estimation method) is proposed. In Chapter 5, we consider the
problem of inference as it is related to the evolving stochastic empirical
likelihood inverse problem. In Chapter 6, we introduce the Kullback-Leibler
information criterion and the Shannon-Jaynes maximum entropy principle,
and provide an estimation and inference basis for the evolving maximum
empirical exponential likelihood estimator.

In Part III, we introduce the Cressie-Read family goodness of fit-power
divergence measures and provide, in Chapter 7, a framework for estimation
and inference. In Chapter 8, sampling experiments are used to illustrate the
finite sampling properties of this family of estimators. Recognizing there
may be uncertainty regarding the specification of the estimating equations,
a choice rule under quadratic loss is proposed.

In Part IV, we consider an information theoretic approach to the binary-
discrete choice stochastic inverse problem. In Chapter 9, a minimum power
divergence (MPD) family of distribution functions for the binary response
discrete choice model is proposed, an estimation framework is specified,
and the corresponding statistical properties are identified. In Chapter 10,
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an estimation and inference basis for the binary MPD family is demonstrated
and sampling experiments are used to illustrate finite sample results.

In Part V, we recognize that a basic limitation of traditional likelihood-
divergence approaches is the impossibility of describing or identifying
estimators-distributions of an arbitrary form. In Chapter 11, we address
this estimation and inference problem by suggesting a loss-function-based
way of choosing an optimum member from the Cressie-Read family.

Finally, in Chapter 12, we look back over the preceding chapters with
a critical eye and make predictions about the econometric information
theoretic road ahead.

1.3 Selected References

Cavalier, L., 2008. “Nonparametric Statistic Inverse Problems,” Inverse Problems,
24:1-19.

Mittelhammer, R., M. Judge, and D. Miller, 2000. Econometric Foundations, Cambridge
University Press, New York.



PART I

TRADITIONAL PARAMETRIC AND
SEMIPARAMETRIC ECONOMETRIC MODELS:
ESTIMATION AND INFERENCE

In Part I, we use a familiar data sampling process to focus on parametric
and semiparametric econometric models. This grouping nicely reflects the
information, real or imagined, that the analyst uses in terms of the eco-
nomic and data sampling process that is being modeled. In contrast to fully
defined parametric models, semiparametric models cannot be fully defined
in terms of the values of a finite number of parameters. In particular, there
is no assertion made that a particular parametric family of probability dis-
tribution is known that fully defines the probability distribution underlying
the data sampling process. Building on this base, in Part I we move in the
direction of extremum formulations for analyzing models of this type. For
a more complete discussion of the material and relevant proofs in Chapters
2 and 3, see Mittelhammer, Judge, and Miller (2000) and Mittelhammer
(1996).



