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Preface

English is the most important language in international academia. In order to strengthen aca-
demic exchange with western countries, many universities in China pay more and more attention to
the bilingual teaching in classrooms in recent years. Considering the importance of advanced mathe-
matics and scarcity of bilingual mathematics textbook, we have written this book.

The main subject of this book is calculus. Besides, it also includes differential equation,
analytic geometry in space, vector algebra and infinite series. This book is divided into two
volumes. The first volume contains calculus of functions of a single variable and differential
equation. The second volume contains vector algebra and analytic geometry in space, multi-
variable calculus and infinite series.

We have attempted to give this book the following characteristics:

(D The content of this book is based on the Chinese textbook “advanced mathematics
(sixth edition)” which is written by department of mathematics of Tongji University. The
readers may read this book and use the Chinese textbook “advanced mathematics” as a refer-
ence. It may help readers to understand the mathematical contents and to improve the level of
their English.

@ In order to train the mathematical idea and ability of the students, we use some mod-
ern idea, language and methods of mathematics. We also bring in some mathematical symbol
and logical symbol.

@ We pay more attention to the application of mathematics in practical problems. We have
added some other examples and exercises in physics, chemistry, economics and even daily life.

@ Considering the different teaching requirements in different schools, we mark some

difficult sections and exercises by the symbol “*”

. Teachers and students may choose suit-
able contents as required.

In this volume, Chapter 8 is written by Jingiu Li, the first four sections in Chapter 9
are written by Min Liu, the rest five sections in Chapter 9 are written by Zhenyu Guo,
Chapter 10 is written by Jingxian Yu, Chapter 11 is written by Xiaoying Zhao, Chapter 12
is written by Mingming Chen. All the chapters are checked and revised by Mingming Chen.

We hope this book can bring readers some help in the studying and teaching of bilingual
mathematics. Due to the limit of our ability, it is impossible to avoid some errors and unclear

explanations. We would appreciate any constructive criticisms and corrections from readers.

Authors
Liaoning Shihua University
2010-11
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Chapter

Vector Algebra and Analytic
Geometry of Space

In analytic geometry of plane,points of plane and ordered pair, graphs of plane and equa-
tions are matched by method of coordinate. Then, problems of geometry are studied with al-
gebraic method. Analytic geometry of space is established according to the similar method.

This chapter introduces the concepts of vector algebra and analytic geometry of
space. These concepts are very important not only for studying calculus of functions of sever-
al variables in next chapter, but also for applications in physics, mechanics,other sciences,and

engineering.

Vectors and their linear operations

8. 1.1 The concept of vector

Some of the things we measure are determined simply by their magnitudes. To record
mass,length or time,for example, we need only write down a number and name an appropri-
ate unit of measure. We need more information to describe a force, displacement, or veloci-
ty. To describe a force,we need to record the direction in which it acts as well as how large it
is. To describe a body’s displacement, we have to say in what direction it moved as well as
how far. To describe a body’s velocity, we have to know where the body is headed as well as
how fast it is going.

A quantity that has both magnitude and direction,such as force,displacement,or veloci-
ty,is called a vector. A vector is usually represented by a line segment with an arrow,a direct-
ed line segment. The length of the directed line segment represents the magnitude of the vec-

tor and the arrow points in the direction of the vector. The vector represented by the directed

line segment from the initial point A to the terminal point B is denoted by AB(Figure 8-1). In



2 Advanced Mathematics( Il )

B textbooks,vectors are usually written in boldface letters,such as a,r.v

and F.In handwritten form, it is customary to draw small arrows

_,
— > —>
above the letters,such as a ,» ,v and F.

A The magnitude of a vector is called the length of the vector. The

Fi 8-1 —_—> —> -
B length of the vectors AB,a and @ are denoted by |AB|,|al| and | |. A

vector whose length is 1 is called a unit vector. A unit vector whose direction is the same as

that of a is denoted by e,. A vector whose length is 0 is called the zero vector and is denoted

by 0 or 0. The initial point of the zero vector coincides with its terminal point. It is the only
vector with no specific direction.

It is seen from the definition of vector that a vector is determined completely by its mag-
nitude and direction and is independent of the location of its initial point and terminal
point. Therefore,two vectors a and b are said to be equal if they have the same length and di-
rection,denoted by a=b.

A vector is called the negative of a,if it has the same length as a but points in the oppo-

e N
site direction,denoted by —a. Obviously,we have AB= — BA.

Let a and b be two nonzero vectors. Then a and b are said to be parallel or collinear, if
their directions are the same or opposite,denoted by a//b. The vectors a and b are said to be
orthogonal or perpendicular,if the directions of a and b are orthogonal,denoted by a_| b.

Suppose that a; ,a ,+*+,a, (k==3) are k£ vectors with a common initial point. If they lie in the
same plane,we say that these vectors are coplanar. It is easy to see that any two vectors are coplanar.

Let a and b be two nonzero vectors. Select a point O of B

space arbitrarily. Make BA): a and 5§= b. The angle between

the two vectors a and b is ./ AOB which is no more than 7(0< :

/ AOB<m) ,denoted by (a,b) or (b,a) (Figure 8-2).If a=0 or g

b=0,(a,b) can be any value between 0 and . o a 4
8.1.2 Vector linear operations Figure 8-2

8.1.2.1 Vector addition
Suppose a particle moves from A to B,so its displacement vector is AB. Then the parti-

cle changes direction and moves from B to C, with displacement vector BC. The combined
effect of these displacements is that the particle has moved from A to C. The resulting dis-
— e — > —_— —> —
placement vector AC is called the sum of AB and BC and we denote AC=AB-+ BC.
In general,if we start with vectors a and b, we first move b so that its tail coincides with
the tip of a and define the sum of a and b as follows.

c Definition 1(Triangle law of vector addition) Suppose that a and

Sl
b are any two vectors and A is any point. Make AB = a. Draw

—
vector BC=Db starting at the terminal point B of a. Connect A

and C (Figure 8-3),then the vector Xézc is called the sum of a
and b,denoted by a-+b. That is e=a-+b.

Figure 8-3 If the vectors a and b are not parallel, we can also find their
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>
sum according to the following parallelogram law. We take an arbitrary point A,draw AB=a,

A_ﬁzb.and take AB and AD as the adjoining sides of a parallelogram ABCD,connect diago-

nal AC (Figure 8-4) ,then a-+b=AC.
The vector addition satisfies the following laws.
(D Commutative law a-+b=b+a.
@ Associative law (a+b) +c=a-+ (b-+o).
Here,D and @ are illustrated geometrically in Figure 8-4 and Figure 8-5 respectively.

Figure 8-4 Figure 8-5

As shown in Figure 8-4,
a+b=X§+EE=:‘X_E=c
b+a=AD+DC=AC—=c
so at+b=b-+a.

As shown in Figure 8-5,make the sum of a+b and ¢,then make the sum of a and b+-c.
We find the same result,that is (a-+b)+c=a-+ (b+c).

According to the triangle law of vector addition, we have the sum of n vectors. Let the
terminal point of one vector be the initial point of next vector. Make vectors a; ,az ,+*,a, (n=>
3)one after the other. Then make the vector start at the initial point of
the first vector and end at the terminal point of the final vector,we have
the sum of n vectors, that is

a;+a;+--+a,
See Figure 8-6,s=a; +a; +a;+a; +as.
Moreover,we define the difference of two vectors b and a by
b—a=b-+(—a)
that is the sum of b and —a (Figure 8-7(a)).

a,

a,
Specially,when b=a,we get Figure -6
a—a=a+(—a)=0

. —_—
Suppose that AB is an arbitrary vector and O is an arbitrary point. Obviously,we have

B E
D
b b-a b Ab
o 2 B
A
0 = A4 Aa
() (c)

Figure 8-7
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> > > —> —>
AB=AO+0OB=0B—0A

Therefore,according to the triangle law of vector addition,if the initial points of a and b are
the same,then the vector starting at the terminal point of a and ending at the terminal point
of b is just the difference of b and a,that is b—a (Figure 8-7(b)).
8.1.2.2 Scalar multiplication

It is possible to multiply a vector by a real number. (In this context we call the real num-
ber a scalar to distinguish it from a vector. )
Definition 2 Let A be a nonzero scalar and a a nonzero vector. Then the product(or scalar
multiple)of A and a is a vector,denoted by A a. Its length is |A a| =|A||a],its direction is the
same as that of a if A>>0 or is opposite to that of a if A<{0. If A=0 or a=0, we define A a=0.

From Definition 2 we have la—a,(—1)a= —a and a= |a|e, , where e, is the unit vector in the di-

rection of a. We set %Z%a when A0, s0 that we have If:|=eu ,provided a7=0. It tells us that the

result of a nonzero vector divided by its length is a vector in the same direction of the original vector.
Products of scalars and vectors satisfy the following laws.
@ Associative law  A(pa) =p(la) = (Ap)a;
According to Definition 2,vectors A(za),u(Aa) and (Ax)a have the same direction,and
|A(pa) | = |pu(Aa) | =| (Ap)a| = [Au] |a]
Therefore,A(pa) =p(da) = (Ap)a.
@ Distributive law  (A+p)a=2Aa+pua; A(a+b) =2a+Ab.
We prove only the distributive law A(a+b) =21a+Ab, leaving the other to readers. If A=

0,the equality holds obviously. Let A>>0 and draw 6/;=a,5é=/\a,A—[3=b,Eh:=Ab (Figure

8-7(c)). Then the three points O, A, B are collinear, and XIS//EE. Therefore, :8?51 = :%% =2

and the points O,D,E are also collinear, OE=2A OD. According to the triangle law, we have

515=Aa—}—/\b,65=a+b,and hence A(a+4b) =Aa+Ab. If A<C0,the proof is similar.

Vector addition and scalar multiplication are called by a joint name vector linear opera-
tions.

From the above discussion we know that the length of a vector has the following basic
properties.

(D Nonnegativity |a|]=0,and |a|] =0&a=0.

@ Absolute homogeneity |Aa|=|A]]|a].

@ Triangle inequality |a+b|<{|a|+ |b|, where the sign of equality holds & a and b
have the same direction.

The geometric meaning of the triangle inequality is that the sum of the lengths of two adjoining
sides of a triangle is greater than or equal to the length of the third side of the triangle.
Example 1 The accompanying Figure 8-8 shows parallelogram ABCD and the midpoint M of

diagonal BD. Let A—l§=a,AD=b. Express W,ME,ME and Mlg in terms of a and b.

Solution.  Because the two diagonals of a parallelogram bisect each other,so a+b=AC=

2 AM, that is — (a-+b)—2 MA. Thus, MA— —%(a-&—b).
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Since ﬁéz —m,we have ME=%(a+b). D C
Since —a+b=§5=2 Mﬁ,we have ﬁ=%(b—a). i M

Since Mé=—ﬁ5,we have ME:%(a—b).

Theorem 1 Suppose the vector a0, then the sufficient N B

and necessary condition of that b is parallel to a is that Figure 8-8
there exists only one real number A such that b=A2a.
Proof. Sufficiency of the condition is obvious,so we prove the necessity of the condition in

the following part.

Suppose b//a. Choose |A| =||—I:||. When b and a have the same direction,then A~>0. When
b and a have the inverse direction,then A<<0,i. e. b=A4 a,here,b and A a have the same direc-
———— |Aa|=|A[|al=[l%l||a|=|b|. |

Now we prove that A is unique. Suppose b=2a and b= pa, make the difference of the
two,we have (A—p)a=0,i.e. |A—u||a|=0.
Since |a| 70, |A—x| =0,i. e. A=p. This is the end of the proof of Theorem 1.

i Theorem 1 is the theoretical basis of establishing num-

o i

ber line. As we have known,a given point,a given direction

R R

and unit length determine a number line. Since a unit vector
Figure 8-9 ; : ; :
determines not only a direction but also a unit length, hence a
given point and a unit vector determine a number line. Suppose that a point O and a unit vec-

tor i determine a number line Ox (Figure 8-9). For any point P on the number line, there is a
vector 55 corresponding to it. Since 613//i, by Theorem 1, there is a unique real number x
such that Z)—I;=Ii (the real number x is called the value of directed line segment 6—13 on the
number line) ,—0_1; and x are one-to-one. Thus,

Point P <> Vector 61;=xi <> Real number x

It shows us that the point P and the real number x are one-to-one. We can define the real

—
number x as the coordinate of P,and OP =i is the sufficient and necessary condition of that

the coordinate of point P is .

8.1.3 Three -dimensional rectangular coordinate system

We choose a fixed point O in space and three number lines through O that are perpendic-
ular to each other,called the coordinate axes and labeled the r-axis, y-axis,and z-axis respec-
tively. The three axes have the same origin O and the same unit of length. Usually we think
of the x-and y-axes as being horizontal and the z-axis as being vertical,and we draw the ori-
entation of the axes as in Figure 8-10. The direction of the z-axis is determined by the right-

hand rule as illustrated in Figure 8-11:If you curl the fingers of your right hand around the 2-

axis in the direction of a - counterclockwise rotation from the positive r-axis to the positive

2

y-axis,then your thumb points in the positive direction of the z-axis.
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Figure 8-10 Figure 8-11

These three coordinate axes make a three-dimensional rectangular coordinate system deno-
ted by Oxyz or [O;i,j,k]; the point O is called the coordinate origin or origin (Figure 8-10).
The three unit vectors on the x-axis, y-axis and z-axis with the same directions as the corre-
sponding axes are called basic unit vectors and denoted by i,j,k respectively.

The three coordinate axes determine the three coordinate planes illustrated in Figure 8-12 (a).
The xOy plane is the plane that contains the r-axis and y-axis; the yOz plane contains the y-
axis and z-axis; the 2zOx plane contains the z-axis and x-axis. These three coordinate planes
divide space into eight parts,called octants, where the octants [ , [[ , Il , [V lie over the quad-
rants 1,2,3,4 of the xOy plane respectively,and the octants V , VI, V[, VI lie below the quad-
rants 1,2,3,4 of the xOy plane respectively (Figure 8-12(b)).

Because many people have some difficulty visualizing diagrams of three-dimensional fig-
ures,you may find it helpful to do the following (Figure 8-12(c)). Look at any bottom corner
of a room and call the corner the origin. The wall on your left is in the 2Ox plane,the wall on
your right is in the yOz plane,and the floor is in the zOy plane. The x-axis runs along the in-
tersection of the floor and the left wall. The y-axis runs along the intersection of the floor and
the right wall. The z-axis runs up from the floor toward the ceiling along the intersection of
the two walls. You are situated in the first octant, and you can now imagine seven other
rooms situated in the other seven octants(three on the same floor and four on the floor be-
low) ,all connected by the common corner point O.

Now if M is any point in space, we draw three planes through M perpendicular to the x-ax-
is, y-axis,and z-axis respectively. The points of intersection with the axes are P,Q, R respective-
ly(Figure 8-13). The points P,Q and R are called the projections of M on the x-axis, y-axis,and
z-axis respectively. Suppose that these three projections have coordinates x,y and z on the x-ax-
is, y-axis,and z-axis respectively. Then the ordered triple (x,y, 2) of real numbers is determined
uniquely by the point M. Conversely, for a given ordered triple (x,y,2) of real numbers, we take
a point P whose coordinate is x on the z-axis, take a point Q whose coordinate is y on the y-ax-
is,and take a point R whose coordinate is z on the z-axis. We draw three planes through P,Q
and R which are perpendicular to the z-axis, y-axis, and z-axis respectively. The point of inter-

section M of these three planes is a unique point in space determined by the ordered triple(z, y,
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z). We have now given a one-to-one correspondence z

between point M in space and ordered triple ( x, y, z)

of real numbers. This ordered triple (x, y, z) is
called the set of coordinates of M, denoted by M(x,
y,2),and x,y,z are called the abscissa, ordinate and
vertical coordinate of M respectively.

8.1.3.1 The radius vector and its components

—
Any nonzero vector OM with initial point at the origin

O is called the radius vector of the point M, or radius

O
vector OM. We know that a vector can be moved par-

allel to itself, but a radius vector is a special vector i
whose initial point is fixed at the origin. It is easy to /
see from Figure 8-13 that the projection vectors of the
» =
radius vector OM onto the basic unit vectors i,j,k(or v | 47 e
. 5 . s T 2 ad
onto the r-axis, y-axis and z-axis) are OP,0Q and OR

respectively, and we have ()—I\;IZ 61;+FIG+W=
513+5,Q+6—I§,that is,
OM= zi+ yj+ 2k (8-1)

where (x,y,2) is just the set of coordinates of the

terminal M of the radius vector OM.
The Formula (8-1) is called the decomposition of
the radius vector with respect to the basic unit vectors i,

j and k. Obviously, when the point M is given,the above
—
decomposition of OM is unique; conversely, the radius

[—
vector OM is determined uniquely by its decomposi-

tion. The ordered triple (z,y,2) is called coordinates of

the radius vector OM, or components of the radius vector (©

. , Figure 8-12
OM. It can be seen that the components of a radius vec- s

R
tor OM are just the coordinates of the terminal point M of the radius vector and vice versa.

z 8.1.3.2 Components of a vector

z|R X Let a be any nonzero vector in a three-dimensional rectan-

gular coordinate system. We move a parallel to itself such that

M its initial point is at the origin. Its terminal point is denoted by

| M(z,y,2); thus a=OM. The components (x,y,z) of the radi-

—
. us vector OM are defined as the components of the vector a,de-

noted by a=(x,y,2). x, y and z are called the first,second and
* third component(or coordinate) of the vector a. Then
Figure 8-13 a=zi+yj+=zk
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is called the component decomposition of the vector a.
8.1.4 Component representation of vector linear operations

Let a=(a,,ay,a:) ,b=(b,,b,,b.) ,that is a=a.ita,jt+a.k,b=0b,i+b,j+0b.k.
By means of vector linear operations we get
a+b=(a,+b,)i+(ay,+b,)j+ (a.+b.)k
a—b="(a,—b)i+(ay—by)j+ (a.—b.)k
Aa=(Aa,)i+ (Aay)j+ (Aa.)k (A is a real number here)
That is,
a+b=(a,+b,,a,+by,a.+b.)
a—b=(a,—b,,ay,—by,a.—b.) (8-2)
Aa= (a, ,Aa, ,Aa.)
In other words,the addition(difference)operation for two vectors is the same as the addition
(difference) of their corresponding components; the operation of multiplication of a scalar and
a vector is the same as the operation of multiplication of the scalar and the corresponding
components of the vector. From Formula(8-2) ,we have a=b & a,=b,,a,=b,,a.=b.. That
is,two vectors are equal if and only if their corresponding components are equal.

From Theorem 1,it is not difficult to obtain that,a and b are collinear(or parallel)if and
only if there is a real number A,such that b=A2a. That is, (b, ,b,,b.) =A(a,,ay,a.).
Then

%Z%I% (8-3)
Note. If one number of a, ,a, ,a. is zero, such as a,=0,a,,a.7#0, then the Formula (8-3)
means that
by _b:

ay a-

b1=0y

If two numbers of a,,a, ,a. are zeros, such as a, =a,=0,a,7%#0, then the Formula (8-
3) means that
by =0, b&,=0
The meanings are similar for the other cases.
Example 2 Solve the following linear system of equations whose unknowns are vectors:
5x—3y=a,
3x—2y=b
where a=(2,1,2) ,b=(—1,1,—2).
Solution. As solving linear system of equations whose unknowns are real numbers,we find
x=2a—3b, y=3a—>5b
Substituting the components representation of a and b into above formulas,then we get
x=2(2,1,2)—3(—1,1,—2)=(7,—1,10)
y=32,1,2)—5(—1,1,—2)=(11,—2,16)
Example 3 Suppose that A(x1,y1,21) and B(xz,y2,22) are two given points. Find a point
M on the line segment AB such that
AM=AMB (#—1)

Solution. As shown in Figure 8-14,since



