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The Coordinate-Free Approach to Linear Models

This book is about the coordinate-free, or geometric, approach to the the-
ory of linear models, more precisely, Model | ANOVA and linear regres-
sion models with nonrandom predictors in a finite-dimensional setting.
This approach is more insightful, more elegant, more direct, and simpler
than the more common matrix approach to linear regression, analysis of
variance, and analysis of covariance models in statistics. The book dis-
cusses the intuition behind and optimal properties of various methods
of estimating and testing hypotheses about unknown parameters in the
models.

Topics covered include inner product spaces, orthogonal projections,
book orthogonal spaces, Tjur experimental designs, basic distribution
theory, the geometric version of the Gauss-Markov theorem, optimal and
nonoptimal properties of Gauss-Markov, Bayes and shrinkage estimators
under the assumption of normality, the optimal properties of F-tests, and
the analysis of covariance and missing observations.

Michael J. Wichura has 37 years of teaching experience in the Department
of Statistics at the University of Chicago. He has served as an associate
editor for the Annals of Probability and was the database editor for the
Current Index to Statistics from 1995 to 2000. He is the author of the
PiCTeX macros (for drawing pictures in TeX) and the PiCTeX manual
and also of the TABLE macros and the TABLE manual.
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PREFACE

When I was a graduate student in the mid-1960s, the mathematical theory
underlying analysis of variance and regression became clear to me after I read a
draft of William Kruskal’s monograph on the so-called coordinate-free, or geometric,
approach to these subjects. Alas, with Kruskal’'s demise, this excellent treatise will
never be published.

From time to time during the 1970s, 80s, and early 90s, I had the good fortune
to teach the coordinate-free approach to linear models, more precisely, to Model [
analysis of variance and linear regression with nonrandom predictors. While doing
so. I evolved my own set of lecture notes, presented here. With regard to inspiration
and content, my debt to Kruskal is clear. However, my notes differ from Kruskal’s
in many ways. To mention just a few, my notes are intended for a one- rather
than three-quarter course. The notes are aimed at statistics graduate students
who are already familiar with the basic concepts of linear algebra, such as linear
subspaces and linear transformations, and who have already had some exposure to
the matricial formulation of the GLM, perhaps through a methodology course, and
who are interested in the underlying theory. I have also included Tjur experimental
designs and some of the highlights of the optimality theory for estimation and testing
in linear models under the assumption of normality, feeling that the elegant setting
provided by the coordinate-free approach is a natural one in which to place these
jewels of mathematical statistics. As he alluded to in his conversation with Zabell
(1994), Kruskal always wished that he could have brought “his book, his potential
book. his unborn book™ to life. Out of deference to Kruskal, who was my colleague
here at the University of Chicago, I have not until now made my notes public.

For motivation, Chapter 1 presents an example illustrating Kruskal’s claim in

his 1961 Berkeley Symposium paper that “the coordinate-free approach ... permits
a simpler, more general, more elegant, and more direct treatment of the general
theory ... than do its notational counterparts, the matrix and scalar approaches.”

I hope that as s/he works through the book, the reader will be more and more
convinced that this is indeed the case.

The last section of Chapter 2 reviews the “elementary” concepts from linear
algebra which the reader is assumed to know already. The first five sections of that
chapter develop the “nonelementary” tools we need, such as (finite-dimensional, real)
inner product spaces, orthogonal projections, the spectral theorem for self-adjoint
linear transformations, and the representation of linear and bilinear functionals. Sec-
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tion 2.3 uses the notions of book orthogonal subspaces and orthogonal projections,
along with the inclusion and intersection of subspaces, to discuss Tjur experimental
designs, thereby giving a unified treatment of the algebra underlying the models one
usually encounters in a first course in analysis of variance, and much more.

Chapter 3 develops basic distribution theory for random vectors taking values
in inner product spaces — the first- and second-moment structures of such vec-
tors, and the key fact that if one splits a spherical normal random vector up into
its components in mutually orthogonal subspaces, then those components are inde-
pendent and have themselves spherical normal distributions within their respective
subspaces.

The geometric version of the Gauss-Markov theorem is discussed in Chapter 4,
from the point of view of both estimating linear functionals of the unknown mean
vector and estimating the mean vector itself. These results are based just on as-
sumptions about the first and second moment structures of the data vector. For an
especially nice example of how the geometric viewpoint is more insightful than the
matricial one, be sure to work the “four-penny problem” in Exercise 4.2.17.

Estimation under the assumption of normality is taken up in Chapter 5. In
some respects, Gauss-Markov estimators are optimal; for example, they are mini-
mum variance unbiased. However, in other respects they are not optimal. Indeed,
Bayesian considerations lead naturally to the James-Stein shrinkage type estimators,
which can significantly outperform GMEs in terms of mean square error.

Again under the assumption of normality, F-testing of null hypotheses and the
related issue of interval estimation are taken up in Chapter 6. Chapters 7 and 8
deal with the analysis of covariance and missing observations. respectively.

The book is written at the level of Halmos’s Finite-Dimensional Vector Spaces
(but Halmos is not a prerequisite). Thus the reader will on the one hand need to
be comfortable with the yoga of definitions, theorems. and proofs, but on the other
hand be comforted by knowing that the abstract ideas will be illustrated by concrete
examples and presented with (what I hope are) some insightful comments. To get
a feeling for the coordinate-free approach before embarking on a serious study of
this book, you might find it helpful to first read one or more of the brief elementary
nontechnical expositions of the subject that have appeared in The American Statis-
tician, for example, Herr (1980), Bryant (1984), or Saville and Wood (1936). From
the perspective of mathematical statistics, there are some very elegant results, and
some notable surprises, connected with the optimality theory for Gauss-Markov es-
timation and F-testing under the assumption of normality. In the sections that deal
with these matters-—in particular Sections 5.4, 5.5, 6.3, 6.4, and 6.6 — the math-
ematics is somewhat harder than elsewhere, corresponding to the greater depth of
the theory.

Each of the chapters following the Introduction contains numerous exercises,
along with a problem set that develops some topic complementing the material in
that chapter. Altogether there are about 200 exercises. Most of them are easy but,
I hope, instructive. I typically devote most of the class time to having students
present solutions to the exercises. Some exercises foreshadow what is to come, by
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covering a special case of material that will be presented in full generality later.
Moreover, the assertions of some exercises are appealed to later in the text. If you
are working through the book on your own, you should at least read over each
exercise, even if you do not work things out. The problem sets, several of which
are based on journal articles, are harder than the exercises and require a sustained
effort for their completion.

The students in my courses have typically worked through the whole book in one
quarter, but that is admittedly a brisk pace. One semester would be less demand-
ing. For a short course, you could concentrate on the parts of the book that flesh
out the outline of the coordinate-free viewpoint that Kruskal set out in Section 2 of
his aforementioned Berkeley Symposium paper. That would involve: Chapter 1, for
motivation: Sections 2.1, 2.2, 2.5, and 2.7 for notation and basic results from linear
algebra; Sections 3.1-3.8 for distribution theory; Sections 4.1-4.7 for the properties
of Gauss-Markov estimators; Sections 5.1 and 5.2 for estimation under the assump-
tion of normality; and Sections 6.1, 6.2, and 6.5 for hypothesis testing and interval
estimation under normality.

Various graduate students, in particular Neal Thomas and Nathaniel Schenker,
have made many comments that have greatly improved this book. My thanks go
to all of them, and also to David Van Dyke and Peter Meyer for suggesting how
easy/hard each of the exercises is. Thanks are also due to Mitzi Nakatsuka for
her help in converting the notes to TEX, and to Persi Diaconis for his advice and
encouragement.

Michael J. Wichura
University of Chicago
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CHAPTER 1

INTRODUCTION

In this chapter we introduce and contrast the matricial and geometric formulations
of the so-called general linear model and introduce some notational conventions.
1. Orientation

Recall the classical framework of the general linear model (GLM). One is given an
n-dimensional random vector Y"*! = (Y;....Y,,)7, perhaps multivariate normally
distributed, with covariance matrix (Cov(Y;, Y;))"*" = o?I"*" and mean vector
nxl — Bp(Y) = (EYs,..., EY,)T of the form
T

p=Xp,

where X"*? is known and ¢? and BP*! = (34,..., ﬁp)T are unknown; in addition,
the /3;’s may be subject to linear constraints R3 = 0, where R“*? is known. X is
called the design, or regression, matrix, and 3 is called the parameter vector.

1.1 Example. In the classical two-sample problem, one has

(11 ...100 ..0\ [
X _<0 6 ..011..1) = B=L_J

~ /O

~~
n times no times

that is.
py, if 1< < ny,
E(Y;) = .

po, ifny <i<ny+ns=n.

1.2 Example. In simple linear regression. one has

r (1 1 ... 1 ) _[(a
X —<.1'1 B or B and (3= b))

EY,))=a+bx; fori=1,...,n. °

that is.
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Typical problems are the estimation of linear combinations of the [3;’s, testing
that some such linear combinations are 0 (or some other prescribed value), and the
estimation of o2

1.3 Example. I[n the two-sample problem, one is often interested in estimating the
difference 15 — p1y or in testing the null hypothesis that p; = pus. °

1.4 Example. In simple linear regression, one seeks estimates of the intercept a
and slope b and may want to test, for example, the hypothesis that b = 0 or the
hypothesis that b = 1. °

If you have had some prior statistical training, you may well have already en-
countered the resolution of these problems. You may know, for example, that pro-
vided X is of full rank and no linear constraints are imposed on 3, the best (minimum
variance) linear unbiased estimator (BLUE) of 37, ;. cif%i is 30, o, cil%i. where

(Brr-. B)T=CXTY, with C=A4"" A=X"X;

this is called the Gauss-Markov theorem.

In this book we will be studying the GLM from a geometric point of view,
using linear algebra in place of matrix algebra. Although we will not reach any
conclusions that could not be obtained solely by matrix techniques, the basic ideas
will emerge more clearly. With the added intuitive feeling and mathematical insight
this provides, one will be better able to understand old results and formulate and
prove new ones.

From a geometric perspective, the GLM may be described as follows, using
some terms that will be defined in subsequent chapters. One is given a random
vector Y taking values in some given inner product space (V. (-.-)). It is assumed
that Y has a weakly spherical covariance operator and the mean p of Y lies in a
given manifold M of V; for purposes of testing, it is further assumed that Y is
normally distributed. One desires to estimate g (or linear functionals of p) and
to test hypotheses such as pu € M, where M is a given submanifold of M. The
Gauss-Markov theorem says that the BLUE of the linear functional ¥ (u) is ¢(j1),
where /i is the orthogonal projection of Y onto M. As we will see, this geometric
description of the problem encompasses the matricial formulation of the GLM not
only as it is set out above (take, for example, V' = R", (-,-) = dot-product, Y =Y.
= p, and M = the subspace of R" spanned by the columns of the design matrix
X)), but also in cases where X is of less than full rank and/or linear constraints are
imposed on the 3;’s.

2. An illustrative example

To illustrate the differences between the matricial and geometric approaches, we
compare the ways in which one establishes the independence of

ngfgnyi

- , ’ 1 =
Vop= =085 g =67 = Y, ~ V)2
0 - and s o — le'is“( )




SECTION 2. AN ILLUSTRATIVE EXAMPLE

in the one-sample problem

YnXl ~ N(/LG.(TZI”'XH') with e = (11

(The vector e is called the equiangular vector.)

The classical matrix proof, which uses some facts about multivariate normal
distributions, runs like this. Let B"*™ = (b;;) be the matrix

1 —1
% 7 0 0 0 0
1 1 =2
7 v T 0 e 0 0
L L 1 —3 0 0
V12 V12 V12 12
1

—(n—1)

1 1 1 1
\/n(n—l) \/n(nfl) \/n.(n—l) ﬁ(n—l) \/n('nfl) \/'n(n—l)

Note that the rows (and columns) of B are orthonormal (Z1< w<n Dikbjk = 0ij

| i
}. [ I) and that the first row is —= e”. Set
0, ifiz#y

T
Z = BY.
Then
Z ~ N((v,X)
with
v = B(ne) = uBe = (vVn 1,0,....0)"
and
Y = B(o?I)BT = ¢?BBT = ¢’I,
that is. Z1. 2o, ..., Z,, are independent normal random variables, each with variance

0%, E(Z,) = v/np, and E(Z;) =0 for 2 < j < n. Moreover,

Ve 1—_Z]
Zl_ﬁzlgg”m_\/m,my_—,

S

while

(n—1)s* = Zlgign(yi -¥Y)P2= Zlgign YI-2 —nY?
- Zl<i§'n Y'Lz B le - zlgign Zzg N le - Z‘Zgign Z?
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because

5 - o
> 7} =2"2=Y'B"BY =Y'Y =) Y2
1<i<n 1<i<n

This gives the independence of Y and s, and it is an easy step to get the marginal
distributions: Y ~ N(u,0%/n) and (n — 1)s%/0? ~ x2_,.

What is the nature of the transformation Z = BY? Let by = e/\/n. bs. . ... b,
denote the transposes of the rows of B. The coordinates of ¥ = Z]<J.<” C'jb; with
respect to this new orthonormal basis for R" are given by

(’,‘:biTY:Z,‘. = L;s:%; n.

The effect of the change of coordinates Y — Z is to split Y into its components
along, and orthogonal to, the equiangular vector e.

Now I will show you the geometric proof, which uses some properties of (weakly)
spherical normal random vectors taking values in an inner product space (V. (-, -)).
here (R", dot-product). The assumptions imply that Y is spherical normally dis-
tributed about its mean E(Y) and E(Y") lies in the manifold M spanned by e. Let
Py denote orthogonal projection onto M and (Qp; orthogonal projection onto the
orthogonal complement ML of M. Basic distribution theory says that Py Y and
QnY are independent. But

(e.Y) -

P/\IY: ——Fe=Ye (.23)
(e.e)

and
QuY =Y —-PyY =Y -Ye=(Y,-Y..... Y, —Y)T;

it follows that Y and (n — 1)s? = D i<cicn(Yi— Y)? = ||QaY||? are independent.
Again it is an easy matter to get the marginal distributions.

To my way of thinking, granted the technical apparatus, the second proof is
clearer, being more to the point. The first proof does the same things, but (to the
uninitiated) in an obscure manner.

3. Notational conventions

The chapters are organized into sections. Within each section of the current chapter.
enumerated items are numbered consecutively in the form

(section_number.item _number).
References to items in a different chapter take the expanded form
(chapter_number.section_number.item_number).
For example, (2.4) refers to the 4" numbered item (which may be an example,

exercise, theorem, formula, or whatever) in the 2" section of the current chapter.
while (6.1.3) refers to the 3" numbered item in the 13 section of the 6'" chapter.



SECTION 3. NOTATIONAL CONVENTIONS 5
Each exercise is assigned a difficulty level using the syntax
Exercise [d],

where d is an integer in the range 1 to 5 — the larger is d, the harder the exercise.
The value of d depends both on the intrinsic difficulty of the exercise and the length
of time needed to write up the solution.

To help distinguish between the matricial and geometric points of view, matrices,
including row and column vectors, are written in ¢talic boldface type while linear
transformations and elements of abstract vector spaces are written simply in italic
type. We speak, for example, of the design matrix X but of vectors v and w in an
inner product space V.

The end of a proof is marked by a m, of an example by a e, of an exercise by
a o, and of a part of problem set by a o.



