14

MOLECULAR GENETICS

An Outline for Food Chemists and Biotechnologists

JAN ŠKODA HELENA ŠKODOVÁ

MOLECULAR GENETICS

An Outline for Food Chemists and Biotechnologists

J. ŠKODA

Institute of Organic Chemistry and Biochemistry of the Czechoslovak Academy of Sciences, Prague, Czechoslovakia

H. ŠKODOVÁ

Research Institute for Biofactors and Veterinary Drugs, Pohoři-Chotouň, Czechoslovakia

ELSEVIER

Amsterdam-Oxford-New York-Tokyo 1987

Published in co-edition with SNTL - Publishers of Technical Literature, Prague

Distribution of this book is being handled by the following publishers:

for the U.S.A. and Canada ELSEVIER SCIENCE PUBLISHING COMPANY, INC. 52 Vanderbilt Avenue, New York, N. Y. 10017

for Albania, Bulgaria, Chinese People's Republic, Cuba, Czechoslovakia, German Democratic Republic, Hungary, Korean People's Democratic Republic, Mongolia, Poland, Romania, the U.S.S.R., Vietnam and Yugoslavia

SNTL - Publishers of Technical Literature Spálená 51, 113 02 Praha 1, Czechoslovakia

for all remaining areas
ELSEVIER SCIENCE PUBLISHERS
Sara Burgerhartstraat 25
P. O. Box 211
1000 AE Amsterdam, The Netherlands

Library of Congress Cataloging in Publication Data

Škoda, J. (Jan)

Molecular genetics.

(Developments in food science; 14) Translation of: Molekulární genetika. Bibliography: p. Includes index.

1. Molecular genetics. 2. Biotechnology. 3. Food—Analysis. 4. Food—Composition. I. Škodová, H. (Helena) II. Title. III. Series. QH506.S55 1987 574.87'328 86-13378 ISBN 0-444-99500-5 (Vol. 14)

ISBN 0-444-99500-5 (Vol. 14 ISBN 0-444-41688-9 (Series)

With 81 illustrations and 10 tables

Copyright © by SNTL — Publishers of Technical Literature, Prague, 1987 © Jan Škoda, Helena Škodová 1984 Translation © Arnošt Kotyk 1986

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of the copyright owners.

Printed in Czechoslovakia

Contents

Preface				9
Heredity				13
Nucleic acids		,		14
Introduction				14
Structure of DNA				16
Structure of RNA				21
Biosynthesis of purine precursors of nucleic acids				26
Biosynthesis of pyrimidine precursors of nucleic acids				33
Biosynthesis of precursors of DNA				35
Utilization of preformed precursors of nucleic acids			2	36
Biosynthesis of DNA			Ċ	37
DNA polymerase	Ċ			38
Replication of a circular chromosome	•	•		41
DNA topoisomerases		٠		42
Repair mechanisms	•	٠	•	45
Photoreactivation		•		45
Dark repair		•		45
Action radius of repair mechanisms		•		46
Biosynthesis of RNA	•	•	•	47
RNA polymerase	,	•	•	47
Polynucleotide phosphorylase		•		50
Methylases of nucleic acids	•	٠	•	50
DNA methylases		•		
RNA methylases	•	٠		50
Specificity of pucleic acid methylases	•	•		51
Specificity of nucleic acid methylases	٠	٠		51
Interaction of antimetabolites with nucleic acid biosynthesis	٠	*		51
Protein biosynthesis				58
Central dogma	•	•		58
Amino acid activation and formation of aminoacyl-tRNA		٠		58
Structure and function of ribosomes	٠	÷	. (60
Genetic code	•	,	. (62
Initiation, elongation and termination of the peptide chain		ř	. (64
Biosynthesis of peptide antibiotics		•	. (67
Control mechanisms			,	69
Feedback control of enzyme activity			. 6	69
Induction and repression of enzyme synthesis			. 7	71
Catabolite repression		780	-	74

Content of nucleic acids and their cellular localization												7	,	75
DNA and RNA in microbial cells							1.51						-	75
DNA and RNA in cells of higher organisms			ì											78
Molecular mechanism of mutations														84
Chemical mutagenesis							s	9					20	85
5-Bromouracil and 2-aminopurine														88
Alkylating agents														89
Nitrous acid														90
Hydroxylamine														90
Acridines														90
Directed mutagenesis using DNA recombination techniques .														91
Radiation and mutation			2		,		÷	9		•	ě			91
Ionizing radiation														91
UV radiation						÷	9	•		ě			ş	93
Integrated segments, transposons and jumping genes														96
				27 . 2					(6)	21				- 0
Application of mutagens and selection of mutants														97
														-
General aspects														97
Technical aspects of work with mutagens														98
Induction of mutants by irradiation														98
Induction of mutants by chemical mutagens														99
Selection and isolation of mutants														100
Some important categories of mutants			•		٠		•			•	•	•		101
Colinearity between the gene structure and the corresponding protein														105
Connearity between the gene structure and the corresponding protein		•	•				•		•	•	•			103
Biological movement of genetic material					×								s.	109
Introduction														100
Reduplication and distribution of chromosomes in eukaryotes.														
Mitosis														
Meiosis														
Reduplication and transfer of chromosomes in bacteria														
reduplication and transfer of enrollosomes in bacteria	•		•		*	•	•	٠	6	٠	•	•	ě	117
Analysis of fundamental genetic principles							4.							119
Mendelian laws														
Recombination of linked genes														123
Gene linkage in eukaryotes														123
Linkage phases and consequences of crossing-over														125
Linkage relation and ways of determining it														125
Chromosome maps														127
Morgan's laws														129
Recombination of linked genes in bacteria														130
Theoretical aspects of recombination mechanisms														131
Gene interactions		9	è		٠	÷	÷	è	j.	٠	÷	•		134
Extranuclear inheritance														135

Introduction	: :	•	(#C /		:						•	•					139 142
Genetic engineering		÷					 ē	•		٠	ē	è	•	•			156
Introduction		,									٠						156
Enzymes used in genetic engineering																	157
Transfer of the globin gene into a bacterial ce	ell .		•		÷		 ÷	×		٠	÷						158
Synthesis of insulin by transformed bacteria									. ,								160
Outline of the genetics of actinomycetes	: .																163
Recombination processes in Streptomyces coe	licol	or															163
Modern techniques of recombination of actin																	
District Control of Control																	100
Principles of the genetics of fungi																	
Introduction																	
Life cycles of fungi																	
Life cycles of yeasts																	
Principal features of fungal sexuality																	
Principles of Mendelian heredity in fungi																	
Tetrad analysis																	
Hybridization of heterothallic fungi																	
Neurospora crassa																	
Saccharomyces cerevisiae																	
Hybridization of homothallic fungi																	
Heterokaryosis																	
ranasexuan cycle		V 183	•		•	•	 ٠	٠		 •	•	•		•	•		104
Appendix							 •										187
Molecular evolution of living matter										 ·							187
Formation of organic compounds																	
Formation of polymeric compounds						1.01									,		189
Origin of complex systems			2					,	į.		ě	•	٠		÷		190
Formation of the cell																	191
Development of aerobic living systems .																	
Evolution of nucleic acids and proteins .																	
Molecular clock			÷		,	•	 8	•	•	 ٠	•	,	٠	٠	•		193
Further reading			·			į.		,	,•), , , ;			;•·					195
Abbreviations and symbols						į • <u>:</u>			· ·								197
· Nucleic acids, polynucleotides and their comp	one	nts															197
Amino acids																	
Index			٠	. ,		٠	 8				÷		*	ě		. ,	203

MOLECULAR GENETICS An Outline for Food Chemists and Biotechnologists

DEVELOPMENTS IN FOOD SCIENCE

- Volume 1 J. G. Heathcote and J. R. Hibbert
 Aflatoxins: Chemical and Biological Aspects
- Volume 2 H. Chiba, M. Fujimaki, K. Iwai, M. Mitsuda and Y. Morita (Editors)

 Proceedings of the Fifth International Congress of Food Science and Technology
- Volume 3 I. D. Morton and A. J. MacLeod (Editors)
 Food Flavours. Part A. Introduction; Part B. The Flavour of Beverages
- Volume 4 Y. Ueno (Editor)

 Trichothecenes: Chemical, Biological and Toxicological Aspects
- Volume 5 J. Holas and J. Kratochvíl (Editors)
 Progress in Cereal Chemistry and Technology. Proceedings of the VIIthWorld
 Cereal and Bread Congress, Prague, Czechoslovakia, 28 June—2 July 1982
- Volume 6 I. Kiss (Editor)

 Testing Methods in Food Microbiology
- Volume 7 H. Kurata and Y. Ueno (Editors)

 Toxigenic Fungi Their Toxins and Health Hazard. Proceedings of the Mycotoxin Symposia held in the Third International Mycological Congress, Tokyo, Japan, 30 August—3 September 1983
- Volume 8 V. Betina (Editor)
 Mycotoxins. Production, Isolation, Separation and Purification
- Volume 9 J. Holló (Editor)
 Food Industries and the Environment. Proceedings of the International Symposium, Budapest, Hungary, 9—11 September 1982
- Volume 10 J. Adda (Editor)

 Progress in Flavour Research 1984. Proceedings of the 4th Weurman Flavour
 Research Symposium, Dourdan, France, 9—11 May 1984
- Volume 11 J. Holló (Editor)
 Fat Science 1983. Proceedings of the International Society for Fat Research
 Congress, Budapest, Hungary, 4-7 October 1983
- Volume 12 G. Charalambous (Editor)

 The Shelf Life of Foods and Beverages. Proceedings of the 4th International Flavour Conference, Rhodes, Greece, 23–26 July 1985
- Volume 13 M. Fujimaki, M. Namiki and H. Kato (Editors)

 Amino-Carbonyl Reactions in Food and Biological Systems. Proceedings of the 3rd International Symposium on the Maillard Reaction, Susuno, Shizuoka, Japan, 1—5 July 1985
- Volume 14 J. Škoda and H. Škodová

 Molecular Genetics. An Outline for Food Chemists and Biotechnologists

1551CHA

MOLECULAR GENETICS

An Outline for Food Chemists and Biotechnologists

J. ŠKODA

Institute of Organic Chemistry and Biochemistry of the Czechoslovak Academy of Sciences, Prague, Czechoslovakia

H. ŠKODOVÁ

Research Institute for Biofactors and Veterinary Drugs, Pohoři-Chotouň, Czechoslovakia

ELSEVIER

Amsterdam-Oxford-New York-Tokyo 1987

Published in co-edition with SNTL - Publishers of Technical Literature, Prague

Distribution of this book is being handled by the following publishers:

for the U.S.A. and Canada ELSEVIER SCIENCE PUBLISHING COMPANY, INC. 52 Vanderbilt Avenue, New York, N. Y. 10017

for Albania, Bulgaria, Chinese People's Republic, Cuba, Czechoslovakia, German Democratic Republic, Hungary, Korean People's Democratic Republic, Mongolia, Poland, Romania, the U.S.S.R., Vietnam and Yugoslavia

SNTL - Publishers of Technical Literature Spálená 51, 113 02 Praha 1, Czechoslovakia

for all remaining areas
ELSEVIER SCIENCE PUBLISHERS
Sara Burgerhartstraat 25
P. O. Box 211
1000 AE Amsterdam, The Netherlands

Library of Congress Cataloging in Publication Data

Škoda, J. (Jan)

Molecular genetics.

(Developments in food science; 14) Translation of: Molekulární genetika. Bibliography: p.

Includes index.

1. Molecular genetics. 2. Biotechnology. 3. Food-Analysis. 4. Food-Composition. I. Škodová, H. (Helena) II. Title. III. Series.

QH506.S55 1987 574.87'328 86-13378

ISBN 0-444-99500-5 (Vol. 14) ISBN 0-444-41688-9 (Series)

With 81 illustrations and 10 tables

Copyright © by SNTL - Publishers of Technical Literature, Prague, 1987 © Jan Škoda, Helena Škodová 1984 Translation © Arnošt Kotyk 1986

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of the copyright owners.

Printed in Czechoslovakia

Contents

Ticiace		•		•	•	,
Heredity						13
Nucleic acids		,				14
Introduction						14
Structure of DNA						16
Structure of RNA						21
Biosynthesis of purine precursors of nucleic acids						26
Biosynthesis of pyrimidine precursors of nucleic acids						33
Biosynthesis of precursors of DNA						35
Utilization of preformed precursors of nucleic acids						36
Biosynthesis of DNA						37
DNA polymerase						38
Replication of a circular chromosome						41
DNA topoisomerases						42
Repair mechanisms						45
Photoreactivation	٠.					45
Dark repair			٠.			45
Action radius of repair mechanisms			į			46
Biosynthesis of RNA						47
RNA polymerase						47
Polynucleotide phosphorylase						50
Methylases of nucleic acids						50
DNA methylases						50
RNA methylases						51
Specificity of nucleic acid methylases						51
Interaction of antimetabolites with nucleic acid biosynthesis		4		٠	٠	51
Protein biosynthesis						58
Central dogma						58
Amino acid activation and formation of aminoacyl-tRNA						58
Structure and function of ribosomes						60
Genetic code						62
Initiation, elongation and termination of the peptide chain						64
Biosynthesis of peptide antibiotics						67
Biosynthesis of peptide antibiotics		•		•	•	0/
Control mechanisms	 					69
Feedback control of enzyme activity						69
Induction and repression of enzyme synthesis						71
Catabolite repression						74
Catabolite repression			•			/+

Content of nucleic acids and their cellular localization												75
DNA and RNA in microbial cells												75
DNA and RNA in cells of higher organisms												78
Molecular mechanism of mutations				ķ.							÷	84
Chemical mutagenesis												85
5-Bromouracil and 2-aminopurine												88
Alkylating agents												89
Nitrous acid												90
Hydroxylamine												90
Acridines												90
Directed mutagenesis using DNA recombination techniques .												91
Radiation and mutation							in a					91
Ionizing radiation				,					 			91
UV radiation								. ,				93
Integrated segments, transposons and jumping genes									 			96
Application of mutagens and selection of mutants									 			97
												0.7
General aspects												97
Technical aspects of work with mutagens												98
Induction of mutants by irradiation												98
Induction of mutants by chemical mutagens												99
Selection and isolation of mutants												100
Some important categories of mutants		* *	3	9	٠	ě			 9		•	101
Colinearity between the gene structure and the corresponding protein												105
Connearity between the gene structure and the corresponding protein	L		٠	•		•			 •		. •	103
Biological movement of genetic material												109
Introduction												
Reduplication and distribution of chromosomes in eukaryotes .												
Mitosis												
Meiosis												
Reduplication and transfer of chromosomes in bacteria		٠.	•	•	è	٠			 			117
Analysis of fundamental genetic principles			٠	٠	•	•	•			į.	٠	119
Mendelian laws									 			119
Recombination of linked genes									 			123
Gene linkage in eukaryotes			,						 			123
Linkage phases and consequences of crossing-over								. ,	 			125
Linkage relation and ways of determining it												
Chromosome maps												127
Morgan's laws												129
Recombination of linked genes in bacteria												130
Theoretical aspects of recombination mechanisms												131
Gene interactions												134
Extranuclear inheritance												135

Introduction			•						•	•						139 142
Genetic engineering	* *						 ÷		•	•					ě	156
Introduction																156
Enzymes used in genetic engineering																
Transfer of the globin gene into a bacterial ce																
Synthesis of insulin by transformed bacteria																
Outline of the genetics of actinomycetes	: .						 ·			•	2			è	¥.	163
Recombination processes in Streptomyces coel	icolo	r.														163
Modern techniques of recombination of actino																
Principles of the genetics of fungi														•		166
Introduction			,				 į					. ,				166
Life cycles of fungi																
Life cycles of yeasts																169
Principal features of fungal sexuality	× ×		•							12				ķ		172
Principles of Mendelian heredity in fungi																
Tetrad analysis			e	, ,		٠			•	•	ě			÷	÷	173
Hybridization of heterothallic fungi																
Neurospora crassa																
Saccharomyces cerevisiae																
Hybridization of homothallic fungi																
Heterokaryosis																
Parasexual cycle	•		٠		•		 •			•			 •	•		184
Appendix															÷	187
Molecular evolution of living matter																187
Formation of organic compounds																
Formation of polymeric compounds																
Origin of complex systems						÷				÷	ě		 *			190
Formation of the cell																191
Development of aerobic living systems .									•	ķ	•		 •	ě	•	191
Evolution of nucleic acids and proteins .																
Molecular clock		•	×			•	 •		•	÷	•		 ٠	÷	٠	193
Further reading			÷		, ,.	÷	 ,	•					 ,			195
Abbreviations and symbols	* *				c .+:											197
· Nucleic acids, polynucleotides and their comp	oner	its .	,													197
Amino acids																201
Index				, ,	٠	ŧ	 •								,	203

Preface

Dear reader,

We would like to invite you to take part in an adventurous trip to the fantastic microworld of informational molecules which contain the code of life, including your own. We want to lead you nearer to the complicated and incredibly accurate work of a living cell in which these informational molecules are formed and where they control and steer its biological functions through a marvellously ingenious mechanism. We invite you to learn to understand the molecular basis of heredity, the discovery of which rates among the most significant achievements of modern science. We shall guide you along a path beginning with the biosynthesis of informational molecules and the laws governing their structure, all the way to the reproduction and functions of these magnificent natural polymers; in their company you will become acquainted with the recent brave attempts of molecular geneticists to interfere with the heredity of living organisms — genetic engineering.

It is essential to realize at the very beginning how minuscule these informational macromolecules are. If an average man's height were equal to the size of Great Britain the informational macromolecule (a double-stranded deoxyribonucleic acid), which is highly economically located in every somatic cell of the super-giant, would appear as a filament about 1 mm in diameter and several hundred kilometres long! The existence of man and all his faculties — as well as those of all other forms of life — are thus based on an incredibly tenuous matrix.

Even the concept of time is different in this micro-cosmos. The singularly complex molecule of a protein formed by several hundred building blocks of twenty different kinds and associated in a precise sequence can be formed in a living cell within a few seconds. Once it is grasped by what complicated and multiply regulated mechanisms a protein molecule is formed, it is almost beyond human comprehension to appreciate the speed at which these intricate and involved processes take place. You will soon appreciate the fact that the apparent perfection of life on the macro-scale is made possible by a no less perfect and admirable micro-world of macromolecules. You will recognize and accept that life is not based on a simple principle, some "living primeval substance", but that the complexity of the biological macro-cosmos only reflects complicated motion in the micro-cosmos of informational molecules. On the other hand, it is a highly satisfying thought to realize that the fundamental principles of all life on Earth are the same at the level of these informational molecules, being based on the existence of very similar, even identical polymers. This conclusion is unequivocal proof of the origin and evolution of life on Earth from the same principle.

The road from the beginnings of classical genetics to molecular genetics was very long and tortuous, fraught with obstacles. Classical genetics needed a whole century to reach definitive conclusions. Mendel is recognized as its founder, the Mendel who in 1865 formulated his classical laws on the basis of experiments with genetic crosses of the pea (*Pisum sativum*). Mendel's genetics localized the hereditary traits into the so-called alleles which occur in pairs. These paired alleles segregate during the formation of gametes (male and female sexual cells) and are recombined during the fertilization process. The model derived from Mendel's studies has a purely statistical character. The segregating units were called genes in 1911.

Morgan's experiments on the fruit-fly (*Drosophila melanogaster*) extended Mendel's laws of heredity by important facts. Genes were found to be organized in certain groups that show mutual linkage during genetic transfers. Within each linkage group genes are ordered in a sequence that can be expressed by a linear genetic map. In such a map short distances between any two genes will result in a small recombination probability whereas longer distances will lead to more frequent recombination during crossing. Morgan's experiments led to the important conclusion that the number of linkage groups exactly matches the number of chromosome pairs of somatic (body) cells.

Another important factor that enriched and extended classical genetics was the discovery of mutation (de Vries); physical or chemical factors were shown to induce changes in hereditary properties.

The onset of the so-called biochemical genetics was marked by experiments with microorganisms and later with phages. When mutagenic factors are permitted to act on microbial cells mutants may arise that do not contain an enzyme, which is essential for the formation of a substance required for growth. Such mutants will grow only if the requisite substance is added to their growth medium. It is through the use of such deficient mutants that a great many problems in biochemistry and "pure" genetics have been solved.

Results of studies of classical genetics led to the conclusion that living matter can be reproduced only if suitable instructions, located in the chromosomes, are present. These instructions, subject to well-defined rules of genetic transfer, are instrumental in the formation of cell proteins (enzymes) and can be influenced by mutagens. However, the chemical nature and structure of this genetic material remained unresolved.

It was in 1928 that Griffith discovered bacterial transformation. He was able to demonstrate that virulence (infectivity) of pneumococci inactivated by heat can be transferred to a nonvirulent (noninfective) strain. Three years later such a bacterial transformation was accomplished *in vitro* by Alloway. After several years of analysing the transformation process Avery and co-workers could declare that the only cell fraction with transformation activity is the fraction of deoxyribonucleic acids. Identification of deoxyribonucleic acids as genetic material and the elucidation of their double-helical structure by Watson and Crick in 1953 laid the foundation of molecular genetics.

In studies of the molecular genetics of microorganisms, bacteria and fungi have been used. However, bacterial mutants are increasingly being employed in production microbiology. Genetic engineering, permitting transfers of genes to be made between different species, opens fundamentally new perspectives for fermentation processes.

Progress in molecular genetics and molecular biology of the cell provides a new impetus for studies of cell differentiation and of the basis of tumour growth. An excellent and uniquely useful model for such studies was found in viruses and the viral transformation of cells. Even immunology is positively stimulated by molecular genetics.

In preparing this volume, we took upon ourselves a complicated task: to select from the enormous breadth of contemporary molecular genetics of microorganisms only the very fundamental information that is germane to the productive development of food chemistry and biology. We assumed that the reader would have a solid knowledge of basic chemistry but only of the principles of biochemistry and biology — hence we attempted to compile something like basic genetics for food chemists and biotechnologists. We were aided in this work by many years of experience in teaching at the Institute of Chemical Technology in Prague. As we were convinced that graphical clarity is of primary importance for understanding the more complicated relationships and for retaining them in the memory, the text is accompanied by a number of schematic representations and illustrations.

We are indebted to the reviewers of the manuscript, Professor Oldřich Nečas and Dr. Václav Pačes, for many valuable comments, to Mr. František Zemanec for collaboration in the illustrations and last but not least to Dr. Arnošt Kotyk for his professional translation of the book into English.

J. Škoda and H. Škodová