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Preface

Ensuring food security of ever-increasing population and preserving natural resources are still
major challenges for all the APEC economies. New technology, such as remote sensing and GIS
technology is shaping economic activity, especially agricultural production, meanwhile,
influencing food security. At present, remote sensing and GIS technology has played a key role in
assessing and predicting crop acreage and production, monitoring crops growth situation and
agricultural disaster. Therefore, we are very much in need of a platform to communicate and share
successful experiences, expertise and lessons on application of remote sensing and GIS in crops
productivity.
Under this background, and in response to the outputs of a series of ATCWG annual Meeting and
2012 APEC funded workshop, the “APEC Training Course on the Application of Remote Sensing
and GIS Technology in Crop Production” was held in August 27"-30", 2013 in Beijing. The
training course aimed at increasing capacity building for APEC economies, especially for
developing economies and realizing technical extension in the application of remote sensing and
GIS in agriculture among APEC economies. Moreover, the training course was expected to
promote advanced technologies adaption among the APEC economies. Therefore, as an important
output of the training course, this proceeding will be particularly valuable.
Participants from economies and international organizations presented their research achievements
related to the application of remote sensing and GIS technology in crop production during the
four-day event. All the presentation were closely linked with crop classification and mapping, crop
yield simulation, acreage assessment, crop forecasting, and agricultural diseases monitoring by
remote sensing and GIS.
Through the training course, delegates did share applicable and universal method and model in the
related field. Moreover, the training course greatly facilitated technological cooperation and
improved public awareness in the APEC region.
This proceeding includes 17 papers. And its publication was funded by the China National Natural
Science Foundation of China (41001049) and the project “The Training Course of Remote Sensing
and GIS Technology in Crop Production” funded by the Chinese Ministry of Finance. The
publication of this proceeding is also encouraged by APEC Secretariat, and APEC Budget
Management Committee (BMC). I truly express my sincere gratitude to staff working for this
training course and all the contributors who helped publish this proceedings. I hope that various
people in the field would review this proceedings and that it will contribute to the development of
remote sensing and GIS technology.

HE Yingbin

Dec., 2013
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Accurate Regional to Field Scale Yield Forecasting of Australian Sugar Cane
and Peanut Crops Using Remote Sensing and GIS
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Abstract — The following paper demonstrates the accuracy
of satellite imagery for the prediction of average regional
yield for both sugar cane and peanut. The development of
non- cultivar and non- class specific algorithms that are
relatively insensitive to seasonal and location variability
offer a useful tool for validating current forecasting
methods.The further development of analysis protocols for
the rapid derivation and distribution of surrogate yield
maps, on mass, offer many applications to their respective
industries. These include improved monitoring capabilities
to quantify lost productivity resulting from within season
incidences of pest and disease outbreaks, as well as
unseasonable weather events.

Keywords— Australian;sugarcane;peanut;yield forecasting

1 INTRODUCTION

Accurate predictions of regional peanut and
sugarcane yield are of vital importance for
formulating harvesting, milling/ shelling and forward
selling decisions. However, if the predictions are
made too early in the growing season accuracies can
be severely influenced by a wide range of biotic and
abiotic constraints. Research conducted under
Australian growing conditions has identified that
remotely sensed imagery acquired within a growing
season can accurately predict the productivity of both
peanut and sugarcane. At the regional level, this
information has been used to effectively validate
pre-season climate modelling based forecasts. At the
field scale, the derivation of surrogate yield maps
have assisted with improved management strategies,
the implementation of precision agricultural
technologies and segregated harvesting based of
maturity, quality and incidence of diseases including
aflatoxin.

Currently, annual production estimates of Australian
sugar cane are made early in the cropping season via
climate based modelling (Everingham et a/.2007).
Additional yield estimates are made 4 months into
the season through the visual assessment of selected
crops. These methods although generally accurate, do
not account for mid to late season climatic anomalies
such as large rain events and associated flooding, or
outbreaks of pest and disease.

For peanut, estimates of annual production are
derived from the amount of seed distributed at the
start of the season. Although, this method provides
reasonable accuracies in some years, it does not take
into account yield and quality fluctuations arising
from variations in seasonal conditions and planting

rates.

Geographic information systems (GIS) and remote
sensing (RS) technologies offer an additional tool for
validating these current methods of prediction.

2 METHODOLOGY
2.1 Study Districts

Sugarcane: Research was conducted across three
climatically distinct Queensland cane growing
regions, the Herbert, the Burdekin and Bundaberg /
Isis during the 2010, 2011 and 2012 growing seasons.
Comprehensive Geographical Information System
(GIS) vector layers of all crops grown within each
growing region and for each season were obtained
from the relevant industry groups.

Peanut: Research was conducted over dryland and
irrigated cropping regions of Queensland including
the South Burnett, Atherton and Bundaberg as well
as Katherine in the Northern Territory. This research
has been continually developed since 2004. Unlike
the cane industry comprehensive GIS boundary
layers defining Peanut crops and associated attribute
data have not been established. Therefore crops were
defined through the supervised classification of
SPOTS5 and QuickBird imagery, on-ground validation
and then digitization to develop crop boundaries.

2.2 Development of the yield prediction algorithm:
Sugarcane

The French owned SPOTS satellite was identified to
be the most appropriate for the Australian sugar
industry due to its spatial and spectral resolutions,
cost, revisit time and minimum scene area of 3600
km’. To convert spectral values into tonnes of cane
per hectare (TCH), a non- cultivar, non- crop class
specific algorithm was derived from the correlation
between average cane yield and corresponding
average crop greenness normalised difference
vegetation index (GNDVI) value. GNDVI was
selected as it expressed less saturation with large
canopy cane crops than the commonly used NDVI.
GNDVI= (Pyig— Pereen) / (PnirtPoreen) (1)
Where Pgreen and Pyr are the Top of Atmosphere
corrected reflectance values measured in the green
and near infrared SPOT 5 spectral bands
GNDVI yield algorithm gBundaberg)
y = 3.1528 * ¢ OOV )



Where y = predicted average yield (TCH) and x =
average GNDVI value extracted from TOA SPOTS5
image (r=0.77, n =151 crops).
An additional algorithm was derived for the
Burdekin region due to its vastly different growing
environment.
GNDVI yield algorithm gBurdekin)

p= 12.691 * e (3.8928 * x) (3)
Where y = predicted average yield (TCH) and x =
average GNDVI value extracted from TOA SPOT5
image (r=0.42, n= 4573 crops).
For a complete methodology of the sampling
procedure used refer to Robson, A., Abbott, C., Lamb,
D., and Bramley, R. (2012).

2.3 Development of the yield prediction algorithm:
Peanut

Due to the smaller cropping area of Peanut within
Australia, the yield prediction algorithm was derived
from imagery acquired from the American owned
QuickBird satellite. The algorithm was developed
from the correlation between NDVI and peanut yield
in tonnes per hectare (t/ha), measured at 295
locations. The crops were sampled between 2004 and
2009 and included 10 cultivars from both dryland
and fully irrigated systems within Queensland and
the Northern Territory. For a complete methodology
of the sampling procedure used refer to Robson, A.J.
(2007).

NDVI = (Pyig— Prep) / (PnirtPrep) (4)
Where Prep and Pyjr are the red and near infrared
QuickBird spectral bands.

NDVI Peanut yield algorithm
y = 02104 * ¢ 59 (5)

Where y = predicted average Peanut yield (t/ha) and
x = average NDVI value extracted from Quickbird
imagery (+=0.74, n= 351 crops).

2.4 Regional Predictions of Sugarcane Yield and
generation of yield maps

A SPOTS5 satellite scene was captured over each of
three target regions during 2010, 2011 and 2012,
with the exception of a 2010 Herbert image due to
continual cloud cover. Image acquisition was
between March and May, a period between
vegetative growth and senescence where sugarcane
exhibits stabilization in development and NDVI
(Bégué et al. 2010; Almeida et al. 2006).

All SPOTS5 images were corrected for top of
atmosphere reflectance (TOA) (SPOT Image, 2008)
and orthorectified. Within ArcGIS, a 20 m metre
internal buffer was applied to the boundary of each
individual field to ensure the extracted spectral
information did not include non cane-specific pixels.
The extraction of spectral information was undertaken
with the software StarSpanGUI (http://projects.

atlas.ca.gov/projects/starspan/). This data along with
corresponding attribute mill data for each field was
exported into Microsoft Excel for additional analysis.
The average GNDVI for all crops was calculated and
then substituted into the appropriate yield algorithm
producing a predicted average regional yield. This
prediction was then validated against the actual
reported yield provided by industry, following
harvest.

For the derivation of yield maps, the TOA georectified
SPOTS images were converted into a GNDVI layer
using ENVI (http7/www.exelisvis.com/).The accompanying
GIS boundary files were transformed into separate
regions of interest (ROI’s) and used to extract the
spectral information of all sugarcane crops. Using the
ENVI band math function, all GNDVI pixel values
were converted to TCH, using the appropriate
algorithm. The crops where then classified into 8
yield classes using a density slice, and saved as a
Geotiff layer or within a GoogleEarth KMZ file for
distribution to end users.

2.5 Regional Predictions of Yield and generation of
yield maps. Peanut

A similar process as that defined for sugarcane was
used for Peanut, with the exception that a 5 metre
internal crop buffer was used instead of the 20 metre
for sugarcane. This was due to the 2.4 metre spatial
resolution of non- pan-sharpened QuickBird imagery
compared to the 10 metre SPOTS imagery.

The mean NDVI value for each crop was calculated,
using the ENVI image “statistics” option, while the
respective areas (hectares) were measured using
ArcMap 10 (UTM, WGS-84). The average NDVI
value was applied to the exponential equation,
producing an average yield for the each crop (t/ha).
The average yield was then multiplied by the area of
the crop (ha) to produce a prediction for total yield.
To validate the accuracy of the prediction, the total
yield for each crop was compared to the actual
payable harvested weight of farmer stock delivered
to peanut processors. This involved additional
QuickBird satellite images being captured over a
number of intensive dry land and irrigated peanut
cropping areas from 2009 to 2012.

3 RESULTS

3.1 Prediction accuracies of the sugarcane
algorithms at the regional level

To assess the predictive accuracy of the algorithm at
a regional level, estimates of average yield were
compared to those provided by the Mills following
harvest. As seen in Table 1, the predicted average
yields were highly comparable to the actual values,
with the exception of 2010 Bundaberg and Isis.



The further derivation of yield maps for all crops
imaged (Figure 1) allowed for regional trends in
productivity to be easily identified. The prediction
accuracies at the block level did display varying
degrees of accuracy, but as seen in Figure 2 has the

potential to be highly accurate. Considering the non
cultivar and non class specific nature of the
Bundaberg and Burdekin algorithm, this result was
highly encouraging.

Table 1 Predicted versus actual average yield (TCH) from 4 growing regions across 3 growing season

Harvest year  Growing Region = Number of crops

Pred.ave.Yield (TCH) Actave.Yield (TCH)

2010 Bundaberg 3544 79.7 81.8
2011 Bundaberg 3824 80.1 73.3
2012 Bundaberg 3217 88.0 88.9
2010 Isis 2772 84.0 84.0
2011 Isis 4205 98.4 83.3
2012 [sis 4000 92.5 96.0
2011 Herbert 8596 51.4 55.0
2012 Herbert 15463 75.0 72.0
2011 Burdekin 4999 118.8 120.0
2012 Burdekin 6921 110.0 105.0

3.2 Prediction accuracies of Peanut algorithm at the
regional and crop level

The validation of the peanut yield prediction algorithm
on a number of irrigated and dry land crops grown
across Australia produced high prediction accuracies.
The example provided in Figure 3, indicates the
predicted yield of 849 tonnes from a 317 ha dry land
crop (cv. Walter), was highly comparable to the
actual payable yield of 874 tonnes.

Prediction accuracies for irrigated crops were less
than those achieved for the dryland crops, around
85% - 90% of actual yield. A result attributed to a
NDVI saturation point occurring around 0.83, or
yield prediction sensitivity above 8 t/ha. This was
further exacerbated by the effect of regional growing
environment especially that in the Atherton tableland.
An additional algorithm was therefore derived for
this region(Figure 3).

Using the Atherton specific algorithm, the average
Peanut yield predicted for 75 crops grown during the
2012 season was 5.1 t/ha, the actual yield was
reported at 4.9 t/ha. The spatial variability of yield
was again derived at the field and regional level by
converting the NDVI values into yield (Figure 4). As
with the derived yield maps for sugar cane, these
surrogate maps were provided to industry via a range
of media.

4 CONCLUSIONS

The results presented in this paper demonstrate many
beneficial applications to both the Peanut and Sugar
cane industries. At the regional level, the accurate
yield forecasts offer an important tool for validating
and enhancing current forecasting methods; whilst
the generation of yield maps on mass offers an
accurate insight into sub regional trends in production.

By having access to multiple years of these maps,
rapid changes in sub-regional trends, including
climatic effects of flooding or drought stress, as well
as outbreaks of pest and disease can be identified.
For peanut access to this information has also
assisted with crop auditing for claiming royalties
associated with plant breeding rights. At the field
level, the surrogate yield maps have assisted with
harvest segregation in response to aflatoxin risk.
Future research will see the development of
additional yield prediction algorithms from SPOTS5
imagery. This will enable yield maps for mixed
peanut and sugar cane farming systems to be
generated from the one image capture.

For the sugar cane industry, 2013 will see coverage
extended to the majority of the Australian growing
regions encompassing 9 SPOT 5 images and over
40000 fields. Additional biometric analysis of data
sets will also be undertaken to further improve the
prediction accuracies at the block level. This will
involve the development of cultivar specific algorithms.
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Abstract-This paper presents an empirical analysis of land
use change from 1985 to 2005 and its impact on soil carbon
storage in China. It compiles a national-level geographic
information system (GIS) database that includes data on
land use, soil, and climate. It also develops a statistical
method for evaluating the impact of land use change on soil
organic carbon storage. The method greatly reduces data
requirements for policy analysis at the national level.
Results indicate that land use change from 1985 to 2005
caused a total increase in topsoil carbon stock by about 7.5
TgC or 0.02 percent. The largest soil carbon increase
occurred when sparser grasslands were converted to denser
grasslands, while the largest soil carbon loss occurred when
denser grasslands were converted to sparser grasslands.
Keywords-China; land use change; soil carbon sequestration
JEL classification: Q15, Q24

1 INTRODUCTION

Soil is the largest carbon pool in global terrestrial
ecosystems. Soil carbon sequestration, defined as
using and managing land in ways that enhance the
natural adsorption of atmospheric carbon by soil, is
considered as a win-win strategy because it not only
mitigates greenhouse gas (GHG) emissions but also
generates economic benefits by improving soil
fertility and agricultural productivity (Antle et al.
2007; Bauer and Black 1994; Feng et al. 2006, 2007;
Lipper and Cavatassi 2004; McCarl and Sands 2007).
The total amount of soil organic carbon (SOC) in
China was estimated in the range of 69.1 to 92.4 PgC
(1 PgC= 10" gram carbon) down to the depth of one
meter (Wang et al. 2001; Wang et al. 2004; Wu et al.
2003; Yang et al. 2007). The findings of spatial
distribution of SOC density are generally consistent in
the literature. The density decreases from the
southeast to the northwest while increases from arid to
semi-humid zone in northern China and from tropical
to cold-temperate zone in eastern China. The carbon
density also decreases with soil depth. Approximately
46-54 percent of soil carbon is stored in the upper 30
centimeters (Wang et al. 2004; Wu et al. 2003; Yang et
al. 2007), almost three times as many as carbon stocks
in vegetation (Piao et al. 2004; Piao et al. 2005).

The long-term storage potential of soil carbon is
limited by site characteristics such as soil type and

climate (IPCC 2006). The extent to which that storage
potential is realized, however, depends largely on how
land is used and managed (Bruce et al. 1999;
Houghton 2003, Paustian et al. 1997; among many).
The literature on soil carbon sequestration in China is
extensive; many facets of agricultural land
management have been examined for their potential to
increase soil carbon (Huang and Sun 2006; Lal 2002;
Tang et al. 2006; Zhang et al. 2007; Zhang et al. 2006).
Only a few studies, however, have considered changes
in soil carbon stocks in multiple ecosystems including
forests and grasslands (Ge et al. 2008; Piao et al. 2009;
Wang et al. 2003).

China has experienced tremendous land use changes
in the last few decades, characterized by three
distinguished features: (1) rapid urban expansion into
fertile farmland in the North China Plain, the Yangtze
River Delta, and the Sichuan Basin, (2) cultivatable
land reclamation on woody areas in Northeast China
and southeast hilly regions and on grassland in
Northwest and Central China, and (3) bi-directional
conversions between woody and grass lands in
southeast coastal and southwest regions (Liu et al.
2003). Besides, China witnessed about 360 thousand
hectares of grass and arable lands annually
encroached by the Gobi Desert (The Gobi is a large
desert region in Asia. It covers parts of northern and
northwestern China, and of southern Mongolia)
because of overgrazing and overplowing. This has led
to a loss of topsoil of 200 thousand hectares each year
(Steffen 2003).

The purposes of this study are twofold. First, it
develops a statistical method to estimate the effect of
land use change on soil carbon densities. Second, it
assesses changes in soil carbon storage caused by land
use change from the 1980s to the 2010 decade. To
achieve these objectives, we compile a geographic
information system (GIS) database that contains three
datasets. The first one includes high-resolution GIS
land use data for four time periods—the mid-1980s,
the mid-1990s, the late 1990s and the middle years of
the 2000-2010 decade, denoted as 1985, 1995, 2000
and 2005, respectively. The land use data were
originally derived from the U.S. Landsat Thematic
Mapper scenes with a 30-meter spatial resolution.



Landsat images were interpreted by the Data Center
for Resources and Environmental Sciences, Chinese
Academy of Science (CAS) with a hierarchy land
cover classification system and were validated by
extensive ground-based surveys (Liu et al. 2003). The
average interpretative accuracy is more than 97
percent (Liu and Buheaosier 2000; Liu et al. 2003).
The second dataset includes cross-sectional SOC
estimates and soil classes that were initially derived
from the Harmonized World Soil Database
(FAO/ITASA/ISRIC/ISS-CAS/IRC 2009). The third
one is the Koppen-Geiger climate classification map
(2006) that is one of the most widely used climate
classification systems.

The long-term SOC storage is determined by the
balance of litter inputs from plant production and
carbon emissions through a decomposition process
(Jobbagy and Jackson 2000; Parton et al. 1993;
Schlesinger 1977), and the impact of land use change
on SOC depends on the site-specific characteristics
such as land quality and weather conditions. Thus, to
evaluate the effect of a conservation policy on SOC, it
is necessary to determine how the policy affects land
use and how changes in land use in turn affect SOC at
each location. This is typically accomplished through
a process-based simulation model calibrated for a
specific site or watershed. It is practically infeasible,
however, to simulate environmental impacts at all
sites and for all sets of conditions that arise in a
national analysis such as the one performed here.

This study makes a methodological contribution by
developing a statistical method for evaluating the
impact of land use change on soil organic carbon
storage at the national level. Instead of relying on
simulations, our method takes advantage of cross-
sectional variations in land use and soil carbon density
and uses the information to identify the relationships
between land use change and SOC density. This
approach can be applied to a large region and hence
overcomes the limitation of a process-based model
that typically works for a relative small region.
Previous studies, particularly those based on field
measurements and soil inventories, are often
conducted at the regional level or focus on a specific
soil type. Ge et al. (2008) adopted a bookkeeping
method to analyze the effects of land use and land
cover change on the terrestrial carbon balance at
provincial level for the period 1700-1949. Wang et al.
(2003) investigated patterns and changes in SOC
storage by region from the 1960s to the 1980s based
on China’s first and second national soil surveys. Piao
et al. (2009) assessed the carbon balance (i.e., annual
carbon change) of China terrestrial ecosystems
between the 1980s and 1990s by integrating biomass
and soil inventories with the remote-sensing NDVI
(normalized difference vegetation index) data. Huang

and Sun (2006) conducted a meta-analysis using data
from 132 publications to evaluate topsoil carbon
changes on cropland. None of the previous studies,
however, has evaluated the effect of land use and
conservation policies on SOC in China at the national
level.

The remainder of this paper is organized as follows:
Section 2 describes materials and methods. Section 3
discusses the results. The final section discusses the
main findings of this study.

2 MODELING THE EFFECT OF LAND USE
CHANGE ON SOC DENSITY

This section describes the method for evaluating the
effect of land use change on SOC density. Following
the IPCC guidelines for SOC inventories, we make
the following assumptions in the evaluation: (1)
Soils tend towards equilibrium under a given set of
climate and soil conditions; (2) The stock of SOC
changes in a linear fashion during the transition to a
new equilibrium. Assumption 1 has been widely
accepted in the literature; assumption 2 simplifies the
estimation of SOC changes and provides a good
approximation of SOC changes over a multi-year
period (IPCC 2006, pp. 2.29).
Under these simplifying assumptions, change in SOC
density, AC, between time 0 and 7 can be calculated
as:
AC = (C'=C) xT/T (1)

Where C° is carbon density at the beginning of land
use transition period, C! is carbon density when soils
achieve new equilibrium, and T is the number of
periods it takes to reach the new equilibrium. We set 7
equaltoT forT > T.
It would be easy to calculate the change in SOC
density when C° and C' were known. But multiple
soil inventories are rarely available. In practice, C*
can be extrapolated using one-period soil inventory
and some stock change factor. Specifically, given C°,
C?! can calculated by

€1 = C° x exp(8jks) )
Where Jji is the stock change factor in response to a
specific land use conversion from j to k stratified by a
combination of soil and climate class s. Taking the
natural logarithm on both sides of (2), we have

In Cl =In Co +6jks (3)
Practically, stock change factor is often derived from
experimental data, by estimating the factors from each
study or observation and then analyzing those values
using appropriate statistical technique (e.g., Ogle et al.
2004). Since studies on changes in soil carbon in
China’s multi-ecosystem are generally lacking, we use
a treatment effect analysis to estimate Jj;; based on a
digital SOC density map and remote-sensing land use
data.



Assume in a natural experiment, land use represents a
group of mutually exclusive treatments and a log-
transformed SOC density is the subsequent outcome.
A cause is viewed as land conversion from one use
(hereafter control) to an alternative use (hereafter
treatment) that brings about a change in the log-
transformed SOC density. Given any land unit » that
is exposed to a control j, the causal relationship of
land use conversion and SOC density can be
expressed as

(ln C)jksn =p+ Tik +ps+ (Tp)jks + Ejksn (4)
Where u is the general mean, 7j; is the treatment
effect of changing land use from j to &, p; is the soil-
climate block effect, (tp) jis is the treatment x block
interaction, and &sp is a random error with mean 0
and variance o°. Given any soil and climate condition
s, a conversion from a control use j to a treated use k
would cause 7j; + (tp)jks unit changes in the
logarithm of SOC density when achieving the new
equilibrium (that is, &jxs = Tjx + (7p)jks ). The
underlying assumption is that soil temperature,
moisture, and texture interact with land use activities,
jointly controlling carbon absorption and release
mechanisms.

2.1 The Estimation Method

Spatial autocorrelation is one econometric consideration
because SOC density in neighboring land units may
have unobserved factors that are correlated over space,
leading to inefficient estimates and invalid hypothesis
testing procedures. There are two ways to control such
correlation; one is to specify a non-spherical error
variance-covariance matrix and is often called a
spatial error model (Anselin 1988), and the other is to
eliminate nearest neighbors from the sample,
commonly called spatial sampling routine (Besag
1974; Haining 1990). The advantage of the first
approach is that when properly specified, it can
generate efficient estimates, but the approach could
make computation infeasible when data sets are large,
because the estimation relies on the maximum
likelihood principle (Magnus 1978; Mardia and
Marshall, 1984; among many). In addition, the
estimation results are subject to a specific and
restrictive set of assumptions of non-spherical error
variance-covariance matrix. The second approach will
not, in general, be fully efficient but its great
advantage lies in its simplicity and flexibility. This
approach has been demonstrated effective at reducing or
eliminating potential spatial autocorrelation in the error
terms in many land use studies.

The basic unit of observation in this study is 1 km x 1
km pixel, of which there are more than 9.5 million to
cover the entire country. Therefore, we choose the
second approach to control spatial autocorrelation; we
take a 1-out-of-25 sample by choosing only the pixels

at the centers of a 5 kmx 5 km grid. It would allow us
to take advantage of the large sample while avoiding
intensive computation.

Another important concern is the nonrandomized data
used in this study. Unlike a randomized experiment in
which the outcomes from treatment and control
groups are often be directly compared because their
units are generally similar, a nonrandomized
experiment may produce biased estimates when
directly comparing a treatment group to a control
group, because the units exposed to a treatment could
differ systematically from the units exposed to a
control. This is often called sample selection (or self-
selection) bias in the literature.

To correct for such potential bias, a number of
matching estimators have been proposed in the
econometric/statistical literature(See Imbens 2004 for
a thorough review). The idea of matching is, in
sampling from a large reservoir of potential controls
to pair the treated and control units that are similar in
the distribution of covariates, the receipt of treatment
is likely to be independent of the outcomes with and
without treatment (Rosenbaum and Rubin 1983).

In this study, we follow the strand of nearest neighbor
matching and take two strategies to make the
treatment and control groups more comparable to each
other. First, we stratified land units into soil-climate
blocks in the conceptual model,;see equation (4).
Within each block, land use treatments can be
compared under a relatively uniform environment.
Second, we pair the treated and control units that are
geographically closest to each other. The underlying
assumption is that nearby land units are more likely to
have similar characteristics, including topographic
position, soil physical properties, and other unobserved
features. Matching is implemented after spatial sampling,
One issue arises in implementing matching is whether
or not to match with replacement. Matching with
replacement minimizes the Euclidean distance
between the treated units and the matched control
units, which is beneficial in terms of bias reduction.
However, when only few control units close to the
treated units, the control units will be repeatedly used
as a match. This increases the variance of the
estimates. Matching without replacement improves
the precision of the estimates but it could raise bias; it
would also complicate the algorithm because the
results are potentially sensitive to the order in which
the treatment units are matched (Rosenbaum 1995).

A closely related question is whether to consider the
order of treatment and control, i.e., matching each
treated unit to a control or reversely, matching each
control unit to a treated. In the former case, the focus
is on the subpopulation of treated units and the
derived estimator is actually the estimated treatment
effect when changing land use from the control in the



past to the treatment in the present. In the latter case,
of more interest is the subpopulation of control units
and the derived estimator is the estimated treatment
effect of conversion from the current control use to
the future treatment use.

The selection of matching strategy is an empirical
question. It depends on the geographical distance
between the treatment and control groups. When most
units in the treatment and control groups are
geographically close to each other, the foregoing
methods will yield similar results. In the application
that follows, we consider three matching estimators:
the treatment effect for the treated population, the
treatment effect for the control population, and the
treatment effect for overall population.

Specifically, given any pair of treatment and control
groups, we begin with matching each treated unit to a
control unit to produce the first estimates (treatment
effects for the treated population). In this case, every
treated unit is used only once but the control can be
repeatedly selected. We then match the pair in an
opposite direction and generate the second estimates
(treatment effects for the control population). In this
sample, the treated units, instead of control, can be
chosen more than once. Note that the order of
treatment and control matters when producing these
two estimates. In particular, for each pair of treatment
and control groups, the first estimates are exactly
equal to the second estimates produced by
interchanging the order of treatment and control.
Finally, we overlap the two samples generated by
using the first and second approaches, and use their
intersection to produce the third estimator (treatment
effects for overall population). By doing so, we pair
the treated and control units that are truly nearest
neighbors, which could further reduce the potential
bias from sample selection. With this approach, both
treated and control units are used only once and the
treatment effects are symmetric.

2.2 Data

Our study uses a GIS database that covers whole
China, including a digital SOC density map, land use
data for four years, IPCC soil class map, and Képpen-
Geiger Climate Classification map.

2.2.1 SOC Density

The digital SOC density map was generated from
Global Soil Organic Carbon Estimates that were
developed by Joint Research Center, European
Commission (Hiederer and Kéchy 2012), designed to
support the calculation of potential emissions of CO,
from the soil at a finer resolution (1 km) under the
IPCC land use and climate change scenarios. The
stocks of SOC were computed separately for the
topsoil (0-30 cm) and subsoil (30-100 cm) layers

using SOC content, gravel content, soil depth, and
bulk density data in the Harmonized World Soil
Database (HWSD, version 1.1). In particular, the
spatial layers on parameters of soil in China were
initially derived from the Soil Map of China based on
data of the office for the Second National Soil Survey
of China (1995) and were distributed by the Institute
of Soil Science in Nanjing (Shi et al. 2004). This
Survey was a special nationwide research and
documentation project organized by the State Council
and carried out by a consortium of universities,
research institutes, and soils extension centers. It
includes soil inventory data from 2,473 typical soil
profiles collected during 1979-1985.

We use the layer of top 30 cm for the presented
analysis as soil carbon stored in the topsoil is most
likely to be affected by land use changes. Figure 1
maps the spatial distribution of China’s topsoil carbon
density.

2.2.2 Land Use

CAS generated the contiguous land use data based on
the U.S. Landsat Thematic Mapper/Enhanced
Thematic Mapper (TM/ETM) images (Liu and
Buheaosier 2000; Liu et al. 2003; Liu et al. 2010). The
data are available for four time periods—the mid-
1980s, the mid-1990s, the late 1990s, and the middle
years of the 2000-2010 decade—denoted as 1985,
1995, 2000, and 2005, respectively. There are more
than 500 TM scenes for each period. CAS made
visual interpretations and digitization of TM/ETM
images to derive thematic maps of land use
percentages with a spatial resolution of 1 km and
sorted the data with a hierarchical classification
system of 25 land use classes, which were further
grouped into nine aggregated classes: paddy, dryland,
woodland, dense grassland, medium grassland, sparse
grassland, water area, urban land, and unused land
(Figure 2). In particular, woodland includes natural
and planted forests and land used for tea-gardens,
orchards and nurseries; water area is classified as land
covered by natural water bodies and land with
facilities for irrigation and water conservation; urban
land includes land used for wurban and rural
settlements, industry, and transportation. A detailed
explanation of the nine aggregated land use classes is
available in the appendix.

Table 1 depicts land use conversions, by assigning
each land unit to the use with the highest proportion,
among these classes for 1985-2005, where entries in a
cell indicate the number of Mha that were in the row
land use in 1985 and column land use in 2005. The
entries along the diagonal are areas where land use
has not changed. All land uses except grasslands and
water area increased. Land use changes occurred
mainly from farmlands (paddy and dryland) to urban



