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Binary Additive Counter Stream Ciphers

Cunsheng Ding*, Wenpei Sif

Abstract

Although a number of block ciphers have been designed and are available in the
public domain, they are usually used in one of the four modes: the cipher block
chaining mode, the cipher feedback mode, the output feedback mode, and the
counter mode. In all these cases, a stream cipher is actually used, as any block
cipher used in any of these modes becomes a stream cipher. Stream ciphers are
preferred, as they can destroy statistical properties of natural languages to some
extent. The objective of this paper is to provide the state-of-the-art of a special
type of stream ciphers, called binary additive counter stream ciphers, by surveying
known results in the literature, deriving design criteria, and presenting experimen-
tal results. Two examples of binary additive counter stream ciphers are analysed in
details, and are used to illustrate that it is possible to construct a practical stream
cipher with many security properties. The security of the two ciphers with respect
to known plaintext attacks is proven to be equivalent to the computational com-
plexity of two number-theoretic problems. This is the first time that the security
of a cipher with respect to known plaintext attacks is proved to be equivalent to
the computational complexity of a mathematical problem.

2000 Mathematics Subject Classification: 11T71, 68P25, 94A55, 94A60.
Keywords and Phrases: Additive synchronous stream ciphers, Counter gener-
ator, Difference sets, Highly nonlinear functions.

1 Introduction

Ciphers are classified into stream and block ciphers, depending on whether or
not the encryption transformation is time-varying. In most applications, stream
ciphers are preferred, as they can destroy statistical properties of natural languages
to some extent.

The only cipher which is provably secure in the information sense and sim-
ple in structure is the one-time pad, which is not practical for real applications.
Ciphers employed in real systems are usually complex in structure and it is thus
hard to analyse and prove their security. Two open problems in cryptography are
the following;:

*Department of Computer Science and Engineering, The Hong Kong University of Science
and Technology, Clearwater Bay, Kowloon, Hong Kong, China. Email: cding@cse.ust.hk.

TDepartment of Computer Science and Engineering, The Hong Kong University of Science
and Technology, Clearwater Bay, Kowloon, Hong Kong, China. Email: siwenpei@ust.hk.
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(r+1) mod N (t+1) mod N

register register

plaintext ciphertext ciphertext plaintext

AN “ U -
encryption decryption

Figure 1: The binary additive counter stream cipher.

1. Is there a practical cipher with provable security in terms of computational
complexity?

2. If there is a practical cipher with provable security in terms of computational
complexity, how do we design it?

One simple and natural type of stream ciphers is the binary additive counter
stream ciphers depicted in Figure 1, where the keystream generator consists of a
cyclic counter with period N and a function f from Zy =: {0,1,2,--- ,N — 1}
to Zo := {0,1}, where N is a huge integer. The cyclic counter has a memory
unit and counts the integers in Zy cyclically. The initial content of the memory
unit of the cyclic counter is the secret key, which could be any integer between
0 and N — 1. If the secret key is k, the keystream bit k; at time unit ¢ is then
k: = f((t+ k) mod N). The encryption of a message bit is the exclusive-or of the
message bit and the corresponding keystream bit. The decryption process is the
same as the encryption process.

The objectives of this paper are to survey all known results scattered over
a number of references and present new ones about the binary additive counter
stream ciphers of Figure 1. This is to provide the reader with the state-of-the-art
of the binary additive counter stream ciphers. The paper is organized as follows.
Section 2 presents a number of design criteria for the binary additive counter
stream ciphers depicted in Figure 1. Section 3 documents an example of the
binary additive counter stream ciphers, called Legendre cipher, and its security
properties. Section 4 describes another example of the binary additive counter
stream ciphers, called two-prime cipher, and its security properties. Section 5
provides information on functions f from Zy to Zg with optimal nonlinearity pys
which may be employed in the ciphers of Figure 1, and concludes this paper.

In this paper, the security of the Legendre and two-prime ciphers with re-
spect to known plaintext attacks is proven to be equivalent to the computational
complexity of two number-theoretic problems. This is the first time that the secu-
rity of a cipher with respect to known plaintext attacks is proved to be equivalent
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to the computational complexity of a mathematical problem.

2 Possible attacks and design criteria

2.1 The linear and sphere complexity attacks and the
associated design criteria

2.1.1 The linear complexity attack and the design criterion associated
to this attack

Let 2™ = zpz1 - -- 2n—1 be a sequence of length n over the finite field GF(g). The
linear complezity (also called the linear span) of the sequence z™ is defined to be the

smallest nonnegative integer L such that there exist constants c¢j,co, - ,cp—1 €
GF(q) for which

Zj+CIZj_1+~'-+CLZj_L=0, forall L <j < n. (1)

This definition applies also to semi-infinite sequences 2™ = zpz; --- over GF(q),
where n = oo. For an ultimately periodic sequence 2™ over GF(q), the linear
complexity must be a finite number. The corresponding polynomial 1 + ¢y +
cox? +---+ ezt € GF(q)[z] is called the minimal polynomial of the sequence. In
engineering terms, the linear complexity is the length of the shortest linear feed-
back shift register that can produce the sequence, where the minimal polynomial
is called the feedback polynomial of the linear feedback shift register (LFSR).

If the linear complexity of the output sequence of the counter generator is
L, then 2L consecutive output bits of the counter generator can be used to con-
struct an LFSR of length L that produces the same keystream sequence. The
equivalent LFSR can be constructed using the Berlekamp-Massey algorithm or by
solving a system of linear equations. Hence, the keystream sequence of an additive
synchronous stream cipher must have large linear complexity.

Design Criterion 1. The linear complexity of the keystream sequence of the
binary additive counter stream cipher in Figure 1 should be large.

2.1.2 The linear complexity stability attack and the associated design
criterion

Although the linear complexity of a keystream sequence may be very large, there
might be another sequence with very low linear complexity such that the Hamming
distance between the two sequences is very small. If this is the case, one can use
the sequence with low linear complexity to approximate the original keystream
sequence. In other words, in this case one can construct an LFSR with short
length to approximate the original keystream generator.

If changing a small number of entries in a sequence decreases the linear com-
plexity of the sequence to a large extent, we say that the linear complexity of the
original sequence is not stable. The linear complexity stability issue was observed
in 1989 ([7]) and a measure of the linear stability (called weight complerity) was
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introduced there. Shortly afterwards, the sphere complexity for both finite and
periodic sequences was introduced in the monograph [16], as a measure of the
linear complexity stability.

Let ™ be a sequence of length n over GF(gq), and let ¢ be any integer with
0 < ¢ < n. The sphere complexity of ™ is defined to be

™ — ~ LC n n ’
SCe(z™) e (=™ +y")

where y™ is any sequence of length n over GF(q), Wy (y™) denotes the Hamming
weight of y™, and LC(z™) is the linear complexity of the sequence z™.

Let z°° be a sequence of period n (not necessarily the least period) over
GF(q), and let £ be any integer with 0 < £ < n. The sphere complezity of x* is
defined to be

SCy(z™) = Pmgloicn)_" LC(z* + y*),
0<Wg(y™)<t
where y™ denotes the first periodic segment of the sequence y> over GF(q), Per(z)
is the period of z, and LC(z*°) is the linear complexity of the sequence z°°.

The sphere complexity was introduced in 1991 in [16], two years earlier
than the £-error linear complexity, which is defined to be min{LC(z°), SC¢(z>°)}.
Clearly, the f-error linear complexity is nothing new, but the minimum of the two
earlier measures: linear complexity and sphere complexity.

Based on the linear complexity stability, the best affine approximation (BAA)
attack on certain stream ciphers was developed in [16, Chapter 3]. For the binary
additive counter stream ciphers of Figure 1, one can construct an LFSR to ap-
proximate the original keystream cipher if the sphere complexity SC;(s*) of the
keystream sequence is small for small . Hence, another design requirement is that
the sphere complexity SCy(s°) of the keystream sequence of the binary additive
counter stream ciphers should be large enough for small 4.

Design Criterion 2. The sphere complexity SCy(s*) of the keystream sequence
of the binary additive counter stream ciphers in Figure 1 should be large enough
for small £.

2.1.3 The control of the linear and sphere complexity

The linear complexity and sphere complexity of periodic sequences can be con-
trolled easily as follows [9].

Proposition 1. ([9]) Suppose N = p§' ---pf*, where py,--- ,p; are t pairwise
distinct primes, and q is a power of a prime such that ged(q, N) = 1. Then for
each nonconstant sequence z>° of period N over GF(q),

LC(:EOO) > min{ordpl (Q)’ e 70rdpt (Q)},
Sck(xoo) > min{ordpl (Q), o 70rdpe (Q)}v if k< min{WH(:L'N)y N = WH(I:N)};

where Wy (zV) denotes the Hamming weight of the first periodic segment =N of
the sequence >, and ordy,(q) is the order of ¢ modulo p;.



