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PREFACE TO THE TENTH EDITION

T rE changes in the present edition are as follows:

1. An index has been added. Hardy had begun a revision of
an index compiled by Professor S. Mitchell; this has been com-
pleted, as far as possible on Hardy’s lines, by Dr T. M. Flett.

2. The original proof of the Heine-Borel Theorem (pp. 197-
199) has been replaced by two alternative proofs due to Professor
A. S. Besicovitch.

3. The ‘Implicit Function Theorem’ (p. 203) has now a
revised statement and proof due to Professor A. S. Besicovitch.

4. Example 24, p. 394 has been added to.

August, 1950 J. E. LITTLEWOOD

PREFACE TO THE SEVENTH EDITION

THE changes in this edition are more important than in any
since the second. The book has been reset, and this has given
me the opportunity of altering it freely.

I have cancelled what was Appendix II (on the ‘O, o, ~’
notation), and incorporated its contents in the appropriate
places in the text. I have rewritten the parts of Chs. VI and VII
which deal with the elementary properties of differential
coefficients. Here I have found de la Vallée-Poussin’s Cours
d’analyse the best guide, and I am sure that this part of the
book is much improved. These important changes have naturally
involved many minor emendations.

I have inserted a large number of new examples from the
papers for the Mathematical Tripos during the last twenty years,
which should be useful to Cambridge students. These were
collected for me by Mr E. R. Love, who has also read all the
proofs and corrected many errors.



vi PREFACE

The general plan of the book is unchanged. I have often felt
tempted, re-reading it in detail for the first time for twenty
years, to make much more drastic changes both in substance
and in style. It was written when analysis was neglected in
Cambridge, and with an emphasis and enthusiasm which seem
rather ridiculous now. If I were to rewrite it now I should not
write (to use Prof. Littlewood’s simile) like ‘a missionary talking
to cannibals’, but with decent terseness and restraint; and,
writing more shortly, I should be able to include a great deal
more. The book would then be much more like a T'raité d’analyse
of the standard pattern.

It is perhaps fortunate that I have no time for such an
undertaking, since I should probably end by writing a much
better but much less individual book, and one less useful as an
introduction to the books on analysis of which, even in England,
there is now no lack.

November, 1937 G. H. H.

EXTRACT FROM THE PREFACE
TO THE FIRST EDITION

THIS book has been designed primarily for the use of first year
students at the Universities whose abilities reach or approach
somethinglike what is usually described as ‘scholarshipstandard’.
I hope that it may be useful to other classes of readers, but it is
this class whose wants I have considered first. It is in any case
a book for mathematicians: I have nowhere made any attempt
to meet the needs of students of engineering or indeed any class
of students whose interests are not primarily mathematical.

I regard the book as being really elementary. There are plenty
of hard examples (mainly at the ends of the chapters): to these I
have added, wherever space permitted, an outline of the solution.
But I have done my best to avoid the inclusion of anything that
involves really difficult ideas.

September, 1908 G. H. H.
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CHAPTER 1
REAL VARIABLES

1. Rational numbers. A fraction r = p/q, where p and ¢
are positive or negative integers, is called a rational number. We
can suppose (i) that p and ¢ have no common factor, since if they
have a common factor we can divide each of them by it, and
(ii) that g is positive, since

p/(—9) = (-p)g, (—p)(—9)=2P/q.
To the rational numbers thus defined we may add the ‘rational
number 0’ obtained by taking p = 0.

We assume that the reader is familiar with the ordinary
arithmetical rules for the manipulation of rational numbers. The
examples which follow demand no knowledge beyond this.

Examples I. 1. If r and s are rational numbers, then r+s, r—s, rs,
and r/s are rational numbers, unless in the last case s = 0 (when 7/s is of
course meaningless).

2. If A, m, and n are positive rational numbers, and m>n, then
A(m? —n?), 2Amn, and A(m?+n?) are positive rational numbers. Hence
show how to determine any number of right-angled triangles the lengths
of all of whose sides are rational.

3. Any terminated decimal represents a rational number whose de-
nominator contains no factors other than 2 or 5. Conversely, any such
rational number can be expressed, and in one way only, as a terminated
decimal.

[The general theory of decimals will be considered in Ch. IV.]

4. The positive rational numbers may be arranged in the form of a
simple series as follows:

SERCR-15 O TR.T8 T8 T5 TF SR

Show that p/q is the [#(p+g—1) (p +g—2) +g]th term of the series.

[In this series every rational number is repeated indefinitely. Thus 1
occursas i, 3,3, .... Wecan of courseavoid this by omitting every number

HPM I



2 REAL VARIABLES [

which has already occurred in a simpler form, but then the problem of
determining the precise position of p/q becomes more complicated.]

2. The representation of rational numbers by points
on a line. It is convenient, in many branches of mathematical
analysis, to make a good deal of use of geometrical illustrations.

The use of geometrical illustrations in this way does not, of
course, imply that analysis has any sort of dependence upon
geometry: they are illustrations and nothing more, and are em-
ployed merely for the sake of clearness of exposition. This being
80, it is not necessary that we should attempt any logical analysis
of the ordinary notions of elementary geometry; we may be
content to suppose, however far it may be from the truth, that
we know what they mean.

Assuming, then, that we know what is meant by a straight line,
a segment of a line, and the length of a segment, let us take a
straight line A, produced indefinitely in both directions, and a
segment A, 4, of any length. We call 4, the origin, or the point 0,
and A; the point 1, and we regard these points as representing
the numbers 0 and 1.

In order to obtain a point which shall represent a positive
rational number r = p/q, we choose the point 4, such that

AgA.JA A =7,
A, A, being a stretch of the line extending in the same direction
along the line as 4,4, a direction which we shall suppose to be
from left to right when, as in Fig. 1, the line is drawn horizontally
across the paper. In order to obtain a point to represent a

1
T

A_, Ay

>.n—
2
>+
2

>-.—

Fig. 1

negative rational number r = —s, it is natural to regard length as
a magnitude capable of sign, positive if the length is measured in
one direction (that of 4,4,), and negative if measured in the
other, so that AB = — BA4; and to take as the point representing
r the point A_, such that

AyA_=—-A_A,=—A4,4,
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We thus obtain a point 4, on the line corresponding to every
rational value of 7, positive or negative, and such that
AyA, =r. A A;;
and if, as is natural, we take 4,4, as our unit of length, and write
AyA4, =1, then we have
A,4,=r.
We shall call the points A4, the rational points of the line.

3. Irrational numbers. If the reader will mark off on the
line all the points corresponding to the rational numbers whose
denominators are 1, 2, 3, ... in succession, he will readily convince
himself that he can cover the line with rational points as closely
as he likes. We can state this more precisely as follows: if we take
any segment BC on A, we can find as many rational points as we
please on BC.

Suppose, for example, that BC falls within the segment 4, 4,.
It is evident that if we choose a positive integer k so that

E.BOST eveoeeeeeeeeeeeannn (1)*,

and divide 4, 4, into k equal parts, then at least one of the points
of division (say P) must fall inside BC, without coinciding with
either B or C. For if this were not so, BC would be entirely in-
cluded in one of the k parts into which 4, 4, has been divided,
which contradicts the supposition (1). But P obviously corre-
sponds to a rational number whose denominator is k. Thus at
least one rational point P lies between B and C. But then we can
find another such point ¢ between B and P, another between
B and @, and so on indefinitely; i.e., as we asserted above, we can
find as many as we please. We may express this by saying that
BC includes tnfinitely many rational points.

The meaning of such phrases as ‘infinitely many’ or ‘an infinity of’, in
such sentences as ‘ BC includes infinitely many rational points’ or ‘there
are an infinity of rational points on BC’ or ‘there are an infinity of positive

integers’, will be considered more closely in Ch. IV. The assertion ‘there
are an infinity of positive integers’ means ‘given any positive integer n,

* The assumption that this is possible is equivalent to the assumption of what is
known as the axiom of Archimedes.

I-2



4 REAL VARIABLES [1

however large, we can find more than n positive integers’. This is plainly
true whatever n may be, e.g. for n = 100,000 or 100,000,000. The assertion
means exactly the same as ‘we can find as many positive integers as we

please’.

The reader will easily convince himself of the truth of the following
assertion, which is substantially equivalent to what was proved in the
second paragraph of this section: given any rational number r, and any
positive integer n, we can find another rational number lying on either
side of r and differing from 7 by less than 1/n. It is merely to express this
differently to say that we can find a rational number lying on either side
of r and differing from r by as little as we please. Again, given any two
rational numbers 7 and s, we can interpolate between them a chain
of rational numbers in which any two consecutive terms differ by as
little as we please, that is to say by less than 1/n, where n is any positive
integer assigned beforehand.

From these considerations the reader might be tempted to
infer that an adequate view of the nature of the line could be
obtained by imagining it to be formed simply by the rational
points which lie on it. And it is certainly the case that if we
imagine the line to be made up solely of the rational points, and
all other points (if there are any such) to be eliminated, the figure
which remained would possess most of the properties which
common sense attributes to the straight line, and would, to put
the matter roughly, look and behave very much like a line.

A little further consideration, however, shows that this view
would involve us in serious difficulties.

Let us look at the matter for a moment with the eye of common
sense, and consider some of the properties which we may reason-
ably expect a straight line to possess if it is to satisfy the idea
which we have formed of it in elementary geometry.

The straight line must be composed of points, and any segment
of it by all the points which lie between its end points. With any
such segment must be associated a certain entity called its length,
which must be a quantity capable of numerical measurement in
terms of any standard or unit length, and these lengths must
be capable of combination with one another, according to the
ordinary rules of algebra, by means of addition or multiplication.
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Again, it must be possible to construct a line whose length is the
sum or product of any two given lengths. If the length PQ, along
a given line, is @, and the length Q R, along the same straight line,
isb, thelength P R must be a + b. Moreover, if the lengths OP, 0Q,
along one straight line, are 1 and a, and the length OR along
another straight line is b, and if we determine the length OS by
Euclid’s construction (Euc. vi. 12) for a fourth proportional to
the lines OP, 0Q, OR, this length must be ab, the algebraical
fourth proportional to 1, @, b. And it is hardly necessary to remark
that the sums and products thus defined must obey the ordinary
‘laws of algebra’; viz.
a+b=b+a, a+(b+c)=(a+b)+c,
ab = ba, a(bc) = (ab)c, a(b+c)=ab+ac.

The lengths of our lines must also obey a number of obvious laws
concerning inequalities as well as equalities: thus if 4, B, C are
three points lying along A from left to right, we must have
AB < AC, and so on. Moreover it must be possible, on our funda-
mental line 4, to find a point P such that 4, P is equal to any
segment whatever taken along A or along any other straight line.
All these properties of a line, and more, are involved in the
presuppositions of our elementary geometry.

Now it is very casy to see that the idea of a straight line as
composed of a series of points, each corresponding to a rational
number, cannot possibly satisfy all these requirements. There

P

Fig. 2

are various elementary geometrical constructions, for example,
which purport to construct a length z such that z? = 2. For
instance, we may construct an isosceles right-angled triangle



