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Preface

In the quarter century which has elapsed since the publication of the
monumental treatise of Hille and Phillips (1957), the vitality of the theory of
one-parameter semigroups has been clearly demonstrated in a variety of
fields. Although many volumes have been published using one-parameter
semigroups in various areas of applied mathematics, there seems to be no
recent text giving a connected account of the abstract theory. This book is an
attempt to rectify that situation.

One of the main problems in writing the book has been deciding how far to
go into the applications. It would have been easy to double the length of the
book by including some of these, and I could not have hoped to rival the
specialist books even with such an expansion. In the end I have decided to
avoid applications, and to choose examples not on the grounds of their
importance, which is in any case a matter of judgement, but according to
their value as illustrations of the general theory. It is nevertheless possible
that my own interests in quantum theory and probability theory may be
revealed in the examples in spite of my intentions.

The following is a short list of topics which I have not included in the book.
Even this is not complete and I can only apologise for my ignorance in not
mentioning books and even fields of study to which readers may have
devoted large parts of their working lives.

1. One-parameter semigroups which are not of type ¢, are studied
thoroughly by Hille and Phillips (1957), Krein (1971).

2. Clear and systematic accounts of the perturbation theory of point
spectrum are given by Kato (1966) and Reed and Simon (1978).

3. For applications to probability and potential theory see Bery and Forst
(1975), Dynkin (1965), Feller (1966), Loéve (1955), Meyer (1966).

4. The general theory of spectral operators is covered by Colojoara and
Foias (1968), Dowson (1977), Dunford and Schwartz (1971).

5. Applications to C*-algebras and quantum statistical mechanics are
given by Davies (1976a), Emch (1972), Evans and Lewis (1977),
Pedersen (1979).
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6. The theory of hypercontractive semigroups and its uses in quantum
field theory are described in Reed and Simon (1975), Simon (1974).

7. For non-linear semigroups see Barbu (1976), Brezis (1973), Browder
(1976), Goldstein (1972), Kato (197554), Vainberg (1977).

8. For time-dependent evolution equations see Belleni-Morante (1979),
Friedman (1969), Kato (1970), Krein (1971), Tanabe (1979).

9. For functional differential equations, control theory and approxima-
tion theory see Balakrishnan (1976), Butzer and Berens (1967), Hale
(1977).

The first three chapters of the book, which form its core, should be
accessible to anyone who has taken a thorough undergraduate course in
functional analysis. However, the text is frequently illustrated with exam-
ples, many of which involve differential operators on L” spaces and presup-
pose some familiarity with Lebesgue integration and Fourier analysis. These
topics are also required for the main text of Chapters 7 and 8. Most of the
material in Chapter 7 can be generalized to arbitrary Banach lattices, but I
have chosen to present it only for L” spaces in order to reduce the required
knowledge.

Chapters 4 and 6 are devoted to special aspects of the theory for Hilbert
spaces and for self-adjoint operators. I have assumed a familiarity with the
spectral theorem for a single unitary operator, and then used this special case
to prove the spectral theorem for any unbounded self-adjoint operator. The
theory of quadratic forms is developed from first principles.

It is my great pleasure to thank the many people who have made the
writing of this book possible. Among them I must mention D. A. Edwards,
who introduced me to the subject many years ago, and also made a number
of very helpful criticisms of the manuscript. I am grateful to the members of
the Mathematical Institute and the Fellows of St. John’s College for provi-
ding a happy and stimalating environment for academic research. Finally,
but not least, I wish to thank Miss Onions for her very efficient typing of the
manuscript.

E. B. Davies
October 1979
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Chapter 1

Semigroups and Their Generators

1. BASIC PROPERTIES

We define a (jointly continuous, or c¢) one-parameter semigroup on a
complex Banach space % to be a family 7, of bounded linear operators
T,: B > B parametrized by real ¢ =0 and satisfying the following relations:

(i) To=1.
(i) If0=<s, t <00 then

T T, = T,
(iii) The map
t,f>T,f from[0,c0)x %R to A is jointly continuous.
We shall discuss later the possibility of weakening the condition (iii).

In many areas of applied mathematics one-parameter semigroups arise in
connection with the Cauchy problem for the differential equation

fi=Z2f, (1.1)

where Z is an operator on %, and ' denotes derivative. Formally the solution
of (1.1) is

f! = Y‘If(h
where
T,=e* (1.2)

satisfies (i) and (ii). The problem with these formal calculations is that in
most applications Z is an unbounded operator, so the meaning of (1.2) is
1
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unclear. Much of the first two chapters of the book is devoted to a careful
treatment of problems related to the unboundedness of Z.

The (infinitesimal) generator Z of a one-parameter semigroup 7T, is
defined by

Zf=limt (T.f—f)
110

the domain Dom(Z) of Z being the set of f for which the limit exists. It is
evident that Dom(Z) is a linear subspace of % and that Z is a linear operator
from Dom(Z) into 2. It is not generally the case that Dom(Z) equals %, but
we shall prove that Dom(Z) is a dense subspace of %.

Before doing this we need to discuss integration in Banach spaces. If
f:[a, b]—> B is a continuous function, there is an element of %, denoted by

j: f(x) dx,

and defined by approximating f uniformly by piecewise constant functions,
for which the definition of the integral is evident. It is easy to show that the
integral depends linearly on f and that

<[ Ifeonax

jahf(x) dx

The integral may also be defined for suitable continuous functions f:R - B.
Many other familiar results, such as the fundamental theorem of calculus,
and the possibility of taking a bounded linear operator under the integral
sign, may be proved by the traditional method.

LEMMA 1.1. The subspace Dom(Z) is dense in B, and invariant under T, in
the sense that
T{Dom(Z)} < Dom(Z)
for all t =0. Moreover
T.Zf = ZT.f
for all fe Dom(Z) and t = 0.

Proof. If fe B and

fi= j T.f dx
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then
lim A~ (Tuf—f)
hlo
t+h t
- {h”J' Txfdx—h_lj Txfdx}
hlo h 0
t+h h
=1im{h“j Txfdx—h._‘J' Txfdx}
hl0 v 0
= rf’f-
Therefore f, € Dom(Z) and
Z(f)=T.f—f. (1.3)

Since ¢~ 'f, > f in norm as t}0 we see that Dom(Z) is dense in 4.
If fe Dom(Z) and =0 then

lim A ' (T, - D) T.f=lim T{h™ (T, — Df}
hlo hl0

=T, Zf.
Hence T,f e Dom(Z) and T,Zf = ZT.f.

LEmMMA 1.2. If fe Dom(Z) then

t

71f"fE: 7}23f(ix.
0

Proof. If f e Dom(Z) and ¢ lies in the Banach dual space B* of %, we define
the complex-valued function F(t) by

Foy=(Tf-f- J T.2f dx, ).

Its right hand derivative D" F(t) is given by
D F(1)=(ZT,f-T.Zf, $)=0.
Since F(0)=0 and F is continuous, we see that F(¢) =0 for all £ [0, ).

Since ¢ € B* is arbitrary, the lemma follows by an application of the
Hahn-Banach theorem.

LemMA 1.3. If fe Dom(Z) then f, = T.f is continuously differentiable on
[0, 00) with

fi = Zf..



4 1. SEMIGROUPS AND THEIR GENERATORS

Proof. The right-differentiability of T,f was established in Lemma 1.1. The
left derivative at points 0 <¢< 0 is given by

D T.f=lim h™(T.f~ T, uf)
hlO
=lim h"J’ T.Zf dx,
hlO t—h
by Lemma 1.2,

=T,Zf=ZT.f.

If Z is an operator with domain & in a Banach space # we say that Z is
closed if f, € D,lim, .« f, =f and lim, . Zf, = g together imply that fe &
and Zf = g. Equivalently if the graph of Z is defined by

Gr(Z)={(f,8) EBXRB: fec D and Zf = g}

then Z is closed if and only if Gr(Z) is a closed subspace of % X %, which is
given the product norm

I/ @l =1A1+llgll

Problem 1.4. Use the Hahn-Banach theorem on 2 X & to show that if Z is closed
then it is also weakly closed in the sense that if f, e Dom(Z) and

w-lim f, =f, w-lim Zf, =g

n-cc n-—-oc

then fe Dom(Z) and Zf = g. Note that we say that f, converges weakly to f, or
w-lirg fo=f
if
31210 (fa &) =(f, &)

for all ¢ € B*.

LEMMA 1.5. The generator Z of a one-parameter semigroup T, is a closed
operator.
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Proof. Suppose f, € Dom(Z), lim, .« f. = f and lim,, .« Zf, = g Then using
Lemma 1.2 we obtain

T.f—f=lim (Tfu~f)

n—>oo

t
= lim J’ T.Zf, dx
0

t
= J T.g dx.
0

Therefore

t
lim ¢ (T,f—f)=1lim t"J T.g dx
tlo 0

tl0
=8
so feDom(Z) and Zf = g.

LEMMA 1.6. The space Dom(Z) is complete with respect to the norm

Al = 1A+ 127 (1.4)

Moreover T, is a one-parameter semigroup on Dom(Z) for this norm.

Proof. The map j:Dom(Z)-> B xR defined by j(f)=(f, Zf) is one-one
with range equal to Gr(Z). The first statement of the lemma follows from the
fact that Gr(Z) is closed and

A= 17 (A

The restriction of T, to Dom(Z) is bounded by Lemma 1.1 and trivially
satisfies conditions (i) and (ii). To prove (iii) we note that if T, is defined on
B X RB by

T.(f,8)=(T.f, T:g)
then T, satisfies (i)—(iii) and
(T =Tjf
for all fe Dom(Z).

THEOREM 1.7. Let Z be the generator of a one-parameter semigroup T,. If a
function f:[0, a]l»> Dom(Z) satisfies

fi =Zf, (1.5)
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forallt€[0, a], then
fa = Tafo. (1.6)

Hence T, is uniquely determined by Z.

Proof. Given f, and ¢ € B%, define
F(t)=(T\fa-r, D).

Then
D*F(t>=1hifn (W MT snfamion— Tifa-ik, )
0
=lim (Trsnh {facion —fa—i}, &)
hlO

: -1 _
+1‘1?3 (h {Tr+h Tl}fa—ls é)

= ‘(Tthaﬂ’ ¢>+<ZTrfa—r, ¢>
=0.
Since F is continuous it is constant, and

(Taf()a ¢> = <fa9 d))
for all ¢ € B*. This implies (1.6).

By Lemma 1.3 and Theorem 1.7 the Cauchy problem for the differential
equation

fi=2f,

(i.e. the existence of a solution for arbitrary initial data) is uniquely soluble if
Z is the generator of a one-parameter semigroup and f,€ Dom(Z), with
solution which depends continuously on f,. Since the solutions determine
the semigroup we shall often write

Zi
T,=e“

below, without suggesting that the right hand side is more than a formal
expression.

The converse problems of determining which operators Z are generators
of one-parameter semigroups, and for which operators Z the Cauchy
problem is soluble, are not trivial, and the first of them occupies much of
Chapter 2.
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In applications the domain of a generator Z is often rather complicated to
describe, and one therefore prefers to work in a slightly smaller subspace 2.
We say that 9 < Dom(Z) is a core for an arbitrary closed operator Z if for all
feDom(Z) there exists a sequence f, € 2 such that

lim f,=f, lim Zf, = Zf.

n—>o0 n—-oo

Equivalently 9@ is a core for Z if it is dense in Dom(Z) for the norm defined
in Lemma 1.6.

If Z and Y are two operators on a Banach space we say that Y is an
extension of Z if Dom(Z)< Dom(Y) and Zf = Yf for all fe Dom(Z). We
say that Z is closable if it has a closed extension.

LEMMA 1.8. The operator Z is closable if and only if f,€
Dom(Z), lim, .« f, =0 and lim, .« Z f, = g imply that g = 0. If Z is closable
then it has a least closed extension, called its closure.

Proof. We first note that Y is an extension of Z if and only if
Gr(Z)c Gr(Y)

and that Y is closed if and only if Gr(Y) is a closed subspace of X 3. When
this happens we show that the closure L of Gr(Z) in 8 X 4 is a subspace
which is the graph of an operator X. For L to be a graph it is only necessary to
show that if (f, g1)e L and (f, g2)€ L then g, =g,. But if (f, gi)€ L then
(f, 8)e Gr(Y)so g = Yf and g, = g». It is obvious that X is the least closed
extension of Z.

If Z has a closed extension Y and f, e Dom(Z),lim,.«f, =0 and
lim, . Zf, = g, then since Y is closed 0 € Dom(Y) and Y(0) = g. Since Y is
linear g =0.

Conversely, suppose Z has no closed extension. Then the closure L of
Gr(Z) is not the graph of any operator, so there exist (f, g;)€ L and
(f, g2) € L with g; # g,. There exist sequences f,ll,fi in Dom(Z) such that

lim fo=f  lim Zf,=g,

n->o0 A0
lim fi=f  lim Zf:=g,.
n—>oo n—->oo

Clearly if f, = fL — f2 then
]ln; f,,=0, lim Zf,,=g1—g2;é0.

n—->oo
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It is often not easy to determine whether a given subspace & of Dom(Z) is
a core, but the following criterion is useful when the semigroup 7, is

explicitly given.

THEOREM 1.9. If D =Dom(Z) is dense in B and invariant under the
semigroup T,, then 9 is a core for Z.

Proof. We use Lemma 1.6 and work simultaneously with the two norms. Let

9 denote the closure of 2 in Dom(Z) with respect to ||| - [||. If f€ Dom(Z)
then by the density of & in % there is a sequence f,, € & such that ||, — f]| > 0.
Since t - T,f, is continuous for the || - ||| metric we have
t
J T.f. dx e 9.
(0]
By (1.3)
t t t
lim J T.f» dx~J T.f dx ||| = lim I T.(fn—f) dx”
n->0o0 0 0 n—->00 0

+lim | Tofy~fu =T +]

=0,
SO

t

J‘ T.fdxe 3.
0

By (1.3) once again,

lim
tlo

™ J: T.f dx —fm =lim ||t} LI T.f dx —f”

tlo

+lim (T - - 2]
= 0’
so fe 9. This proves that & = Dom(Z) as required.

Example 1.10. Let L?(R") denote the Banach space of complex-valued measurable
functions f on R" with finite norm

i={ [ o e}



