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Preface

PURPOSE OF THIS BOOK

Why yet another book on linear models? Over the years, a multitude of books have
already been written about this well-traveled topic, many of which provide more
comprehensive presentations of linear modeling than this one attempts. My book is
intended to present an overview of the key ideas and foundational results of linear
and generalized linear models. 1 believe this overview approach will be useful for
students who lack the time in their program for a more detailed study of the topic.
This situation is increasingly common in Statistics and Biostatistics departments. As
courses are added on recent influential developments (such as “big data,” statistical
learning, Monte Carlo methods, and application areas such as genetics and finance),
programs struggle to keep room in their curriculum for courses that have traditionally
been at the core of the field. Many departments no longer devote an entire year or
more to courses about linear modeling.

Books such as those by Dobson and Barnett (2008), Fox (2008), and Madsen
and Thyregod (2011) present fine overviews of both linear and generalized linear
models. By contrast, my book has more emphasis on the theoretical foundations—
showing how linear model fitting projects the data onto a model vector subspace
and how orthogonal decompositions of the data yield information about effects,
deriving likelihood equations and likelihood-based inference, and providing extensive
references for historical developments and new methodology. In doing so, my book
has less emphasis than some other books on practical issues of data analysis, such as
model selection and checking. However, each chapter contains at least one section
that applies the models presented in that chapter to a dataset, using R software. The
book is not intended to be a primer on R software or on the myriad details relevant to
statistical practice, however, so these examples are relatively simple ones that merely
convey the basic concepts and spirit of model building.

The presentation of linear models for continuous responses in Chapters 1-3 has a
geometrical rather than an algebraic emphasis. More comprehensive books on linear
models that use a geometrical approach are the ones by Christensen (2011) and by
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Seber and Lee (2003). The presentation of generalized linear models in Chapters 4—
9 includes several sections that focus on discrete data. Some of this significantly
abbreviates material from my book, Categorical Data Analysis (3rd ed., John Wiley
& Sons, 2013). Broader overviews of generalized linear modeling include the classic
book by McCullagh and Nelder (1989) and the more recent book by Aitkin et al.
(2009). An excellent book on statistical modeling in an even more general sense is
by Davison (2003).

USE AS A TEXTBOOK

This book can serve as a textbook for a one-semester or two-quarter course on linear
and generalized linear models. It is intended for graduate students in the first or
second year of Statistics and Biostatistics programs. It also can serve programs with
a heavy focus on statistical modeling, such as econometrics and operations research.
The book also should be useful to students in the social, biological, and environmental
sciences who choose Statistics as their minor area of concentration.

As a prerequisite, the reader should be familiar with basic theory of statistics,
such as presented by Casella and Berger (2001). Although not mandatory, it will
be helpful if readers have at least some background in applied statistical modeling,
including linear regression and ANOVA. I also assume some linear algebra back-
ground. In this book, I recall and briefly review fundamental statistical theory and
matrix algebra results where they are used. This contrasts with the approach in many
books on linear models of having several chapters on matrix algebra and distribu-
tion theory before presenting the main results on linear models. Readers wanting
to improve their knowledge of matrix algebra can find on the Web (e.g., with a
Google search of “review of matrix algebra”) overviews that provide more than
enough background for reading this book. Also helpful as background for Chapters
1-3 on linear models are online lectures, such as the MIT linear algebra lectures
by G. Strang at http://ocw.mit.edu/courses/mathematics on topics such
as vector spaces, column space and null space, independence and a basis, inverses,
orthogonality, projections and least squares, eigenvalues and eigenvectors, and sym-
metric and idempotent matrices. By not including separate chapters on matrix algebra
and distribution theory, I hope instructors will be able to cover most of the book in a
single semester or in a pair of quarters.

Each chapter contains exercises for students to practice and extend the theory
and methods and also to help assimilate the material by analyzing data. Com-
plete data files for the text examples and exercises are available at the text website,
http://www.stat.ufl.edu/~aa/glm/data/. Appendix A contains supplemen-
tary data analysis exercises that are not tied to any particular chapter. Appendix B
contains solution outlines and hints for some of the exercises.

I emphasize that this book is not intended to be a complete overview of linear and
generalized linear modeling. Some important classes of models are beyond its scope;
examples are transition (e.g., Markov) models and survival (time-to-event) models. I
intend merely for the book to be an overview of the foundations of this subject—that
is, core material that should be part of the background of any statistical scientist. I
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invite readers to use it as a stepping stone to reading more specialized books that
focus on recent advances and extensions of the models presented here.
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CHAPTER 1

Introduction to Linear and Generalized
Linear Models

This is a book about linear models and generalized linear models. As the names
suggest, the linear model is a special case of the generalized linear model. In this first
chapter, we define generalized linear models, and in doing so we also introduce the
linear model.

Chapters 2 and 3 focus on the linear model. Chapter 2 introduces the least squares
method for fitting the model, and Chapter 3 presents statistical inference under the
assumption of a normal distribution for the response variable. Chapter 4 presents
analogous model-fitting and inferential results for the generalized linear model. This
generalization enables us to model non-normal responses, such as categorical data
and count data.

The remainder of the book presents the most important generalized linear models.
Chapter 5 focuses on models that assume a binomial distribution for the response
variable. These apply to binary data, such as “success” and “failure™ for possible
outcomes in a medical trial or “favor™ and “oppose” for possible responses in a
sample survey. Chapter 6 extends the models to multicategory responses, assuming
a multinomial distribution. Chapter 7 introduces models that assume a Poisson or
negative binomial distribution for the response variable. These apply to count data,
such as observations in a health survey on the number of respondent visits in the
past year to a doctor. Chapter 8 presents ways of weakening distributional assump-
tions in generalized linear models, introducing quasi-likelihood methods that merely
focus on the mean and variance of the response distribution. Chapters 1-8 assume
independent observations. Chapter 9 generalizes the models further to permit corre-
lated observations, such as in handling multivariate responses. Chapters 1-9 use the
traditional frequentist approach to statistical inference, assuming probability distri-
butions for the response variables but treating model parameters as fixed, unknown
values. Chapter 10 presents the Bayesian approach for linear models and generalized
linear models, which treats the model parameters as random variables having their

Foundations of Linear and Generalized Linear Models, First Edition. Alan Agresti.
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2 INTRODUCTION TO LINEAR AND GENERALIZED LINEAR MODELS

own distributions. The final chapter introduces extensions of the models that handle
more complex situations, such as high-dimensional settings in which models have
enormous numbers of parameters.

1.1 COMPONENTS OF A GENERALIZED LINEAR MODEL

The ordinary linear regression model uses linearity to describe the relationship
between the mean of the response variable and a set of explanatory variables,
with inference assuming that the response distribution is normal. Generalized linear
models (GLMs) extend standard linear regression models to encompass non-normal
response distributions and possibly nonlinear functions of the mean. They have three
components.

* Random component: This specifies the response variable y and its probability
distribution. The observations' y = (y,, ..., v,)T on that distribution are treated
as independent.

o Linear predictor: For a parameter vector f = (p,, P, ..., ,Bp)T and an X p model
matrix X that contains values of p explanatory variables for the n observations,
the linear predictor is X .

e Link function: This is a function g applied to each component of E(y) that relates
it to the linear predictor,

8lEQ] = XB.

Next we present more detail about each component of a GLM.

1.1.1 Random Component of a GLM

The random component of a GLM consists of a response variable y with independent
observations (yy, ...,y,) having probability density or mass function for a distribu-
tion in the exponential family. In Chapter 4 we review this family of distributions,
which has several appealing properties. For example, Y, y; is a sufficient statistic
for its parameter, and regularity conditions (such as differentiation passing under an
integral sign) are satisfied for derivations of properties such as optimal large-sample
performance of maximum likelihood (ML) estimators.

By restricting GLMs to exponential family distributions, we obtain general expres-
sions for the model likelihood equations, the asymptotic distributions of estimators
for model parameters, and an algorithm for fitting the models. For now, it suffices
to say that the distributions most commonly used in Statistics, such as the normal,
binomial, and Poisson, are exponential family distributions.

"The superscript T on a vector or matrix denotes the transpose; for example, here y is a column
vector. Our notation makes no distinction between random variables and their observed values; this
is generally clear from the context.



