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Preface

This is a book about the theory of topological modular forms. It is also a
record of the efforts of a group of graduate students to learn that theory at the
2007 Talbot Workshop, and so a book born of and steeped in the Talbot vision.

In the fall of 2003, Mike Hopkins taught a course at MIT about tmf. Our gen-
eration of Cambridge algebraic topologists, having survived and thrived in Haynes
Miller’s Kan seminar, found in Mike’s class our next, and really our last common,
mathematical crucible. The course hacked through the theory of algebraic modu-
lar forms, formal groups, multiplicative stable homotopy theory, stacks, even more
stacks, moduli stacks of elliptic curves, Bousfield localization, Morava K- and E-
theory, the arithmetic and Hasse squares, André-Quillen cohomology, obstruction
theory for moduli of associative and commutative ring spectra—by this point we
were having dreams, or maybe nightmares, about the spiral exact sequence.

In the middle of the course, we all flew over to Miinster for a week-long workshop
on tmf with lectures by Mike, Haynes, Matt Ando, Charles Rezk, and Paul Goerss.
A transatlantic mix of students spent the late afternoons coaxing and cramming the
knowledge in at a cafe off Steinfurter Strasse; there we devised a plan to reconvene
and sketched a vision of what would become the Talbot Workshops: a gathering
for graduate students, focused on a single topic of contemporary research interest,
lectured by graduate students and guided by a single faculty mentor, having talks in
the morning and in the evening and every afternoon free for discussion and outdoor
activities, with participants sleeping and lecturing and cooking together under the
same roof. We pitched it to Mike and Haynes and they agreed to back a ragtag
summit. Talbot was born.

Three years later, in 2007, we decided to bring Talbot home with a workshop
on tmf, mentored by Mike Hopkins. Mike stopped by Staples on his way to the
workshop and picked up a big red “That was easy” button. Throughout the work-
shop, whenever he or anyone else completed a particularly epic spectral sequence
computation or stacky decomposition, he’d hit the button and a scratchy electronic
voice would remind us, “That was easy!” It became the workshop joke (for much
of it was evidently not easy) and mantra (for shifting perspective, whether to mul-
tiplicative stable homotopy or to stacky language or to a suitable localization, did
make the intractable seem possible).

This book is a record and expansion of the material covered in the Talbot
2007 workshop. Though the authors of the various chapters have brought their
own expositional perspectives to bear (particularly heroically in the case of Mark
Behrens), the contemporary material in this book is due to Mike Hopkins, Haynes
Miller, and Paul Goerss, with contributions by Mark Mahowald, Matt Ando, and
Charles Rezk.
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1. Elliptic cohomology

A ring-valued cohomology theory F is complez orientable if there is an ‘orien-
tation class’ x € E?(CP>) whose restriction along the inclusion S? = CP! — CP*>
is the element 1 in EYS® = E2CP!. The existence of such an orientation class
implies, by the collapse of the Atiyah-Hirzebruch spectral sequence, that

E*(CP®) =~ E*[[z]).

The class z is a universal characteristic class for line bundles in E-cohomology; it
is the E-theoretic analogue of the first Chern class. The space CP° represents the
functor

X + {isomorphism classes of line bundles on X},

and the tensor product of line bundles induces a multiplication map CP*>° x CP*>* —
CP*. Applying E* produces a ring map

E*[[z]] & E*(CP™) — E*(CP™ x CP*™) = E*([z1, z2];

the image of z under this map is a formula for the E-theoretic first Chern class
of a tensor product of line bundles in terms of the first Chern classes of the two
factors. That ring map E*[[z]] — E*[[z1,z2]] is a (1-dimensional, commutative)
formal group law—that is, a commutative group structure on the formal completion
A! at the origin of the affine line A! over the ring E*.

A formal group often arises as the completion of a group scheme at its identity
element; the dimension of the formal group is the dimension of the original group
scheme. There are three kinds of 1-dimensional group schemes:

(1) the additive group G, = A! with multiplication determined by the map
Z[z] — Z[xy, z3] sending = to 1 + z2,

(2) the multiplicative group G,, = A'\{0} with multiplication determined by
the map Z[z*!] — Z[zF!, 23] sending = to 22, and

(3) elliptic curves (of which there are many isomorphism classes).

xi



xii INTRODUCTION

Ordinary cohomology is complex orientable, and its associated formal group is
the formal completion of the additive formal group. Topological K-theory is also
complex orientable, and its formal group is the formal completion of the multiplica-
tive formal group. This situation naturally leads one to search for ‘elliptic’ coho-
mology theories whose formal groups are the formal completions of elliptic curves.
These elliptic cohomology theories should, ideally, be functorial for morphisms of
elliptic curves.

Complex bordism MU is complex orientable and the resulting formal group
law is the universal formal group law; this means that ring maps from MU, to R
are in natural bijective correspondence with formal group laws over R. Given a
commutative ring R and a map MU, — R that classifies a formal group law over
R, the functor

X = MU(X)®nu., R

is a homology theory if and only if the corresponding map from Spec(R) to the
moduli stack M p¢ of formal groups is flat. There is a map

My — Mpg

from the moduli stack of elliptic curves to that of formal groups, sending an elliptic
curve to its completion at the identity; this map is flat. Any flat map Spec(R) —
My therefore provides a flat map Spec(R) — M p¢ and thus a homology theory, or
equivalently, a cohomology theory (a priori only defined on finite CW-complexes).
In other words, to any affine scheme with a flat map to the moduli stack of elliptic
curves, there is a functorially associated cohomology theory.

The main theorem of Goerss-Hopkins-Miller is that this functor (that is,
presheaf)

{ﬂat maps from affine schemes to M,,”} — {multiplicative cohomology theories}.

when restricted to maps that are étale, lifts to a sheaf
O {étale maps to M({ll} — {Eoc—ring spectra}.

(Here the subscript ‘top’ refers to it being a kind of ‘topological’, rather than
discrete, structure sheaf.) The value of this sheaf on M itself, that is the E-ring
spectrum of global sections, is the periodic version of the spectrum of topological
modular forms:

TMF := O'*P(My) = T(My, OFP).

The spectrum TMF owes its name to the fact that its ring of homotopy groups
is rationally isomorphic to the ring

Zlca, o, A/ (] — § — 17280) = P T ( Moy, w®")

n>0

of weakly holomorphic integral modular forms. Here, the elements ¢4, ¢g, and A
have degrees 8, 12, and 24 respectively, and w is the sheaf of invariant differentials
(the restriction to M of the (vertical) cotangent bundle of the universal elliptic
curve £ — M,y). That ring of modular forms is periodic with period 24, and the
periodicity is given by multiplication by the discriminant A. The discriminant is
not an element in the homotopy groups of TMF', but its twenty-fourth power A%** €
mo42 (TMF) is, and, as a result, m.( TMF) has a periodicity of order 24 = 576.
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One would like an analogous E.-ring spectrum whose homotopy groups are
rationally isomorphic to the subring

Z[cy, ce, A/ (c3 — c2 — 1728A)

of integral modular forms. For that, one observes that the sheaf O'P is defined
not only on the moduli stack of elliptic curves, but also on the Deligne-Mumford
compactification M,y of the moduli stack —this compactification is the moduli
stack of elliptic curves possibly with nodal singularities. The spectrum of global
sections over My is denoted

Tmf := O*P(Mey) = T (Meu, O'P).

The element A%* € w42 (Tmf) is no longer invertible in the homotopy ring, and
so the spectrum Tmf is not periodic. This spectrum is not connective either, and
the mixed capitalization reflects its intermediate state between the periodic version
TMF and the connective version tmf, described below, of topological modular
forms.

In positive degrees, the homotopy groups of Tmf are rationally isomorphic to
the ring Z|ca, cg, A] /(3 — c'é —1728A). The homotopy groups m_1, ..., 7 _gy are all
zero, and the remaining negative homotopy groups are given by:

T_n(Tmf) = [7777,—21( Tmf)] 2 [W'!L—EZ(Tmf)]

torsion-free torsion’

This structure in the homotopy groups is a kind of Serre duality reflecting the
properness (compactness) of the moduli stack M.;;.

If we take the (—1)-connected cover of the spectrum Tmf, that is, if we kill all
its negative homotopy groups, then we get

tmf = Tmf (0),

the connective version of the spectrum of topological modular forms. This spectrum
is now, as desired, a topological refinement of the classical ring of integral modular
forms. Note that one can recover TMF' from either of the other versions by inverting
the element A?* in the 576" homotopy group:

TMF = tmf[A™%] = Tmf[A™2Y).

There is another moduli stack worth mentioning here, the stack ﬂj” of elliptic
curves with possibly nodal or cuspidal singularities. There does not seem to be
an extension of O'P to that stack. However, if there were one, then a formal
computation, namely an elliptic spectral sequence for that hypothetical sheaf, shows
that the global sections of the sheaf over _/Wj” would be the spectrum ¢tmf. That
hypothetical spectral sequence is the picture that appears before the preface. It is
also, more concretely, the Adams—Novikov spectral sequence for the spectrum tmf.

So far, we have only mentioned the connection between ¢tmf and modular forms.
The connection of tmf to the stable homotopy groups of spheres is equally strong
and the unit map from the sphere spectrum to tmf detects an astounding amount
of the 2- and 3-primary parts of the homotopy 7. (S) of the sphere.

The homotopy groups of tmf are as follows at the prime 2:
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and as follows at the prime 3:

il o o o o a, o =8 =8 =8 =8 o,

O 1 8 12 16 20 24 28 32 36 40 £y 48

Here, a square indicates a copy of Z and a dot indicates a copy of Z/p. A little
number n drawn in a square indicates that the copy of Z in =, (¢mf) maps onto an
index n subgroup of the corresponding Z in the ring of modular forms. A vertical
line between two dots indicates an additive extension, and a slanted line indicates
the multiplicative action of the generator n € mi(tmf) or v € m3(tmf). The y-
coordinate, although vaguely reminiscent of the filtration degree in the Adams
spectral sequence, has no meaning in the above charts.

Note that, at the prime 2, the pattern on the top of the chart (that is, above
the expanding ko pattern on the base) repeats with a periodicity of 192 = 8 -
24. A similar periodicity (not visible in the above chart) happens at the prime 3,
with period 72 = 3 -24. Over Z, taking the least common multiple of these two
periodicities results in a periodicity of 24 - 24 = 576.

2. A brief history of tmf

In the sixties, Conner and Floyd proved that complex K-theory is determined
by complex cobordism: if X is a space, then its K-homology can be described as
K. (X) 2 MU.(X) ®pu, K., where K, is a module over the complex cobordism
ring of the point via the Todd genus map MU, — K,. Following this observation,
it was natural to look for other homology theories that could be obtained from
complex cobordism by a similar tensor product construction. By Quillen’s theorem
(1969), MU, is the base ring over which the universal formal group law is defined;
ring maps MU, — R thus classify formal groups laws over R.

Given such a map, there is no guarantee in general that the functor X —
MU,(X) @pu. R will be a homology theory. If R is a flat MU,-module, then
long exact sequences remain exact after tensoring with R and so the functor in
question does indeed define a new homology theory. However, the condition of
being flat over MU, is quite restrictive. Landweber’s theorem (1976) showed that,
because arbitrary MU,-modules do not occur as the MU-homology of spaces, the
flatness condition can be greatly relaxed. A more general condition, Landweber
exactness, suffices to ensure that the functor MU, (—)® sy, R satisfies the axioms of
a homology theory. Shortly after the announcement of Landweber’s result, Morava
applied that theorem to the formal groups of certain elliptic curves and constructed
the first elliptic cohomology theories (though the term ‘elliptic cohomology’ was
coined only much later).

In the mid-eighties, Ochanine introduced certain genera (that is homomor-
phisms out of a bordism ring) related to elliptic integrals, and Witten constructed
a genus that took values in the ring of modular forms, provided the low-dimensional
characteristic classes of the manifold vanish. Landweber-Ravenel-Stong made ex-
plicit the connection between elliptic genera, modular forms, and elliptic coho-
mology by identifying the target of the universal Ochanine elliptic genus with the
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coefficient ring of the homology theory X — MU, (X) ®pv, Z[5][0, €, A™1] asso-
ciated to the Jacobi quartic elliptic curve y? = 1 — 2022 + ex? (here, A is the
discriminant of the polynomial in ). Segal had also presented a picture of the re-
lationship between elliptic cohomology and Witten’s physics-inspired index theory
on loop spaces. In hindsight, a natural question would have been whether there
existed a form of elliptic cohomology that received Witten’s genus, thus explaining
its integrality and modularity properties. But at the time, the community’s at-
tention was on Witten’s rigidity conjecture for elliptic genera (established by Bott
and Taubes), and on finding a geometric interpretation for elliptic cohomology—a
problem that remains open to this day, despite a tantalizing proposal by Segal and
much subsequent work.

Around 1989, inspired in part by work of McClure and Baker on A, structures
and actions on spectra and by Ravenel’s work on the odd primary Arf invariant,
Hopkins and Miller showed that a certain profinite group known as the Morava
stabilizer group acts by A,, automorphisms on the Lubin-Tate spectrum E,, (the
representing spectrum for the Landweber exact homology theory associated to the
universal deformation of a height n formal group law). Of special interest was
the action of the binary tetrahedral group on the spectrum FE, at the prime 2.
The homotopy fixed point spectrum of this action was called EQOs, by analogy
with the real K-theory spectrum KO being the homotopy fixed points of complex
conjugation on the complex K-theory spectrum.

Mahowald recognized the homotopy of EO, as a periodic version of a hypo-
thetical spectrum with mod 2 cohomology A//A(2), the quotient of the Steenrod
algebra by the submodule generated by Sq', S¢?, and Sq¢*. It seemed likely that
there would be a corresponding connective spectrum eo, and indeed a bit later
Hopkins and Mahowald produced such a spectrum; (in hindsight, that spectrum
€0y 1s seen as the 2-localization of tmf). However, Davis-Mahowald (1982) had
proved, by an intricate spectral sequence argument, that it is impossible to real-
ize AJ/A(2) as the cohomology of a spectrum. This conundrum was resolved only
much later, when Mahowald found a missing differential around the 55" stem of the
Adams spectral sequence for the sphere, invalidating the earlier Davis—Mahowald
argument.

In the meantime, computations of the cohomology of MO(8) at the prime 2
revealed an A//A(2) summand, suggesting the existence of a map of spectra from
MO(8) to eoy. While attempting to construct a map MO(8) — EO,, Hopkins
(1994) thought to view the binary tetrahedral group as the automorphism group of
the supersingular elliptic curve at the prime 2; the idea of a sheaf of ring spectra
over the moduli stack of elliptic curves quickly followed—the global sections of that
sheaf, TMF', would then be an integral version of EO,.

The language of stacks, initially brought to bear on complex cobordism and
formal groups by Strickland, proved crucial for even formulating the question TMF
would answer. In particular, the stacky perspective allowed a reformulation of
Landweber’s exactness criterion in a more conceptual and geometric way: MU, —
R is Landweber exact if and only if the corresponding map to the moduli stack of
formal groups, Spec(R) — M p¢, is flat. From this viewpoint, Landweber’s theorem
defined a presheaf of homology theories on the flat site of the moduli stack M pg of
formal groups. Restricting to those formal groups coming from elliptic curves then
provided a presheaf of homology theories on the moduli stack of elliptic curves.
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Hopkins and Miller conceived of the problem as lifting this presheaf of ho-
mology theories to a sheaf of spectra. In the 80s and early 90s, Dwyer, Kan,
Smith, and Stover had developed an obstruction theory for rigidifying a diagram
in a homotopy category (here a diagram of elliptic homology theories) to an honest
diagram (here a sheaf of spectra). Hopkins and Miller adapted the Dwyer-Kan-
Stover theory to treat the seemingly more difficult problem of rigidifying a diagram
of multiplicative cohomology theories to a diagram of A, -ring spectra. The re-
sulting multiplicative obstruction groups vanished, except at the prime 2—Hopkins
addressed that last case by a direct construction in the category of K (1)-local Eo.-
ring spectra. Altogether the resulting sheaf of spectra provided a universal elliptic
cohomology theory, the spectrum T'MF of global sections (and its connective ver-
sion tmf). Subsequently, Goerss and Hopkins upgraded the A, obstruction theory
to an obstruction theory for E.-ring spectra, leading to the definitive theorem of
Goerss-Hopkins—Miller: the presheaf of elliptic homology theories on the compact-
ified moduli stack of elliptic curves lifts to a sheaf of E,.-ring spectra.

Meanwhile, Ando-Hopkins-Strickland (2001) established a systematic connec-
tion between elliptic cohomology and elliptic genera by constructing, for every
elliptic cohomology theory F, an E-orientation for almost complex manifolds with
certain vanishing characteristic classes. This collection was expected to assemble
into a single unified multiplicative tmf-orientation. Subsequently Laures (2004)
built a K (1)-local Es-map MO(8) — tmf and then finally Ando-Hopkins-Rezk
produced the expected integral map of E..-ring spectra M O(8) — tmf that recov-
ers Witten’s genus at the level of homotopy groups.

Later, an interpretation of tmf was given by Lurie (2009) using the theory of
spectral algebraic geometry, based on work of Téen and Vezzosi. Lurie interpreted
the stack M, with its sheaf 0P as a stack not over commutative rings but over
E-ring spectra. Using Goerss-Hopkins—Miller obstruction theory and a spectral
form of Artin’s representability theorem, he identified that stack as classifying ori-
ented elliptic curves over E.-ring spectra. Unlike the previous construction of tmf
and of the sheaf O*P| this description specifies the sheaf and therefore the spectrum
tmf up to a contractible space of choices.

3. Overview
Part I

Chapter 1: Elliptic genera and elliptic cohomology. One-dimensional
formal group laws entered algebraic topology though complex orientations, in an-
swering the question of which generalized cohomology theories E carry a theory of
Chern classes for complex vector bundles. In any such theory, the E-cohomology
of CP> is isomorphic to E*[[c1]], the E-cohomology ring of a point adjoin a formal
power series generator in degree 2. The tensor product of line bundles defines a
map CP> x CP>* — CP*, which in turn defines a comultiplication on E*[[c{]],
i.e., a formal group law. Ordinary homology is an example of such a theory; the
associated formal group is the additive formal group, since the first Chern class
of the tensor product of line bundles is the sum of the respective Chern classes,
ci(L® L) = ¢1(L) + ¢1(L'). Complex K-theory is another example of such a
theory; the associated formal group is the multiplicative formal group.

Complex cobordism also admits a theory of Chern classes, hence a formal group.
Quillen’s theorem is that this is the universal formal group. In other words, the
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formal group of complex cobordism defines a natural isomorphism of MU* with
the Lazard ring, the classifying ring for formal groups. Thus, a one-dimensional
formal group over a ring R is essentially equivalent to a complex genus, that is,
a ring homomorphism MU* — R. One important example of such a genus is
the Todd genus, a map MU* — K*. The Todd genus occurs in the Hirzebruch—
Riemann-Roch theorem, which calculates the index of the Dolbeault operator in
terms of the Chern character. It also determines the K-theory of a finite space
X from its complex cobordism groups, via the Conner-Floyd theorem: K*(X) =
MU*(X) @mu- K*.

Elliptic curves form a natural source of formal groups, and hence complex
genera. An example of this is Euler's formal group law over Z[% d, €] associated
to Jacobi’s quartic elliptic curve; the corresponding elliptic cohomology theory is
given on finite spaces by X — MU*(X) @pru- Z[%.()'. €]. Witten defined a genus
MSpin — Z[[q]] (not a complex genus, because not a map out of MU*) which lands
in the ring of modular forms, provided the characteristic class & vanishes. He also
gave an index theory interpretation of this genus, at a physical level of rigor, in
terms of Dirac operators on loop spaces. It was later shown, by Ando-Hopkins-
Rezk, that the Witten genus can be lifted to a map of ring spectra MString — tmf.
The theory of topological modular forms can therefore be seen as a solution to the
problem of finding a kind of elliptic cohomology that is connected to the Witten
genus in the same way that the Todd genus is to K-theory.

Chapter 2: Elliptic curves and modular forms. An elliptic curve is a
non-singular curve in the projective plane defined by a Weierstrass equation:

y2 +a1xy + a3y = xd + (Lg.lfz + aqr + ag.

Elliptic curves can also be presented abstractly, as pointed genus one curves. They
are equipped with a group structure, where one declares the sum of three points to
be zero if they are collinear in P2, The bundle of Kihler differentials on an elliptic
curve, denoted w, has a one-dimensional space of global sections.

When working over a field, one-dimensional group varieties can be classified into
additive groups, multiplicative groups, and elliptic curves. However, when working
over an arbitrary ring, the object defined by a Weierstrass equation will typically be
a combination of those three cases. The general fibers will be elliptic curves, some
fibers will be nodal (multiplicative groups), and some cuspidal (additive groups).

By a ‘Weierstrass curve’ we mean a curve defined by a Weierstrass equation —
there is no smoothness requirement. An integral modular form can then be defined,
abstractly, to be a law that associates to every (family of) Weierstrass curves a
section of w®", in a way compatible with base change. Integral modular forms
form a graded ring, graded by the power of w. Here is a concrete presentation of
that ring:

Zley. cg, A)/(ch — cg — 1T28A).

In the context of modular forms, the degree is usually called the weight: the gen-
erators ¢y, cg, and A have weight 4. 6, and 12, respectively. As we will see, those
weights correspond to the degrees 8, 12, and 24 in the homotopy groups of tmf.

Chapter 3: The moduli stack of elliptic curves. We next describe the
geometry of the moduli stack of elliptic curves over fields of prime characteristic, and
over the integers. At large primes, the stack M) looks rather like it does over C:



