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Preface

This book covers graph algorithms, pure graph theory, and applications of graph theory
to computer systems. The algorithms are presented in a clear algorithmic style, often
with considerable attention to data representation, although no extensive background in
either data structures or programming is needed. In addition to the classical graph al-
gorithms, many new random and parallel graph algorithms are included. Algorithm de-
sign methods, such as divide and conquer, and search tree techniques are emphasized.
There is an extensive bibliography, and many exercises. The book is appropriate as a
text for both undergraduate and graduate students in engineering, mathematics or com-
puter science, and should be of general interest to professionals in these fields as well.

Chapter 1 introduces the elements of graph theory and algorithmic graph theory. It
covers the representations of graphs, basic topics like planarity, matching, hamiltonicity,
regular and eulerian graphs, from theoretical, algorithmic, and practical perspectives.
Chapter 2 overviews different algorithmic design techniques, such as backtracking, re-
cursion, randomization, greedy and geometric methods, and approximation, and illus-
trates their application to various graph problems. ’

Chapter 3 covers the classical shortest-path algorithms, an algorithm for shortest
paths on euclidean graphs, and the Fibonacci heap implementation of Dijkstra’s algo-
rithm. Chapter 4 presents the basic results on trees and acyclic digraphs, a minimum
spanning tree algorithm based on Fibonacci heaps, and includes many applications, such
as register allocation, deadlock avoidance, and merge and search trees.

Chapter 5 gives an especially thorough introduction to depth-first search and the
classical graph structure algorithms based on depth first search, such as block and strong
component detection. Chapter 6 introduces both the theory of connectivity and network
flows and shows how connectivity and diverse routing problems may be solved using
flow techniques. Applications to reliable routing in unreliable networks and to multipro-
cessor scheduling are given.

Chapters 7 and 8 introduce coloring, matching, vertex and edge covers, and allied
concepts. Applications to secure (zero-knowledge) communication, the design of dead-
lock free systems, and optimal parallel algorithms are given. The Edmonds matching al-
gorithm, introduced for bipartite graphs in Chapter 1, is presented here in its general
form.
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Chapter 9 presents a variety of parallel algorithms on different architectures, such
as systolic arrays, tree processors, and hypercubes, as well as for the shared memory
model of computation. Chapter 10 presents the elements of complexity theory, including
an introduction to the complexity of random and parallel algorithms.

I greatly appreciate the help given to me in the preparation of this book by a num-
ber of graduate students who read and helped correct earlier versions of the manuscript.
These include: Krishna Ayala, Jiann-Ru Chiou, Yaw-Nan Duh, Michael Halper, Shun-
Hsien Huang, Pankaj Kumar, and Lai-Wu Luo. A State of New Jersey SBR grant pro-
vided support during the initial period of the work. I would also like to thank Jim Fegen
and Joe Scordato of Prentice Hall for their help in the development and preparation of
this book. Finally, I appreciate the last careful reading of the manuscript by Peter and
Jimmy, and the constant support I received from my wife, Alice.
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1

Introduction to Graph Theory

1-1 BASIC CONCEPTS

Graphs are mathematical objects that can be used to model networks, data structures,
process scheduling, computations, and a variety of other systems where the relations
between the objects in the system play a dominant role. We will consider graphs from
several perspectives: as mathematical entities with a rich and extensive theory; as mod-
els for many phenomena, particularly those arising in computer systems; and as struc-
tures which can be processed by a variety of sophisticated and interesting algorithms.
Our objective in this section is to introduce the terminology of graph theory, define
some familiar classes of graphs, illustrate their role in modelling, and define when a
pair of graphs are the same.

Terminology. A graph G(V,E) consists of a set V of elements called vertices
and a set E of unordered pairs of members of V called edges. We refer to Figure 1-1 for
a geometric presentation of a graph G. The vertices of the graph are shown as points,
while the edges are shown as lines connecting pairs of points. The cardinality of V, de-

noted |V, is called the order of G, while the cardinality of E, denoted |E]|, is called the
Vi V2 Vs
Vs Va Vg vy

V(G) =1vy, vy, V3, V4, Vs, Vg, Va)
E(G) = {(vy, vy), (vy, vy), (vy, v3), (vy, vq),
(va, vy), (vg, vg), (vg, v4), (v4, vg)|
Order (| V(G) |)=7
Size (| E(G) |)=8
Number of components = 2 Figure 1-1. Example graph G(V, E).



size of G. When we wish to emphasize the order and size of the graph, we refer to a
graph containing p vertices and g edges as a (p, q) graph. Where we wish to emphasize
the dependence of the set V of vertices on the graph G, we will write V(G) instead of
V, and we use E(G) similarly. The graph consisting of a single vertex is called the triv-
ial graph.

We say a vertex u in V(G) is adjacent to a vertex v in V(G) if {u, v} is an edge in
E(G). Following a convention commonly used in graph theory, we will denote the edge
between the pair of vertices u and v by (u, v). We call the vertices u and v the endpoints
of the edge (u, v), and ‘we say the edge (u, v) is incident with the vertices u and v. Given
a set of vertices S in G, we define the adjacency set of S, denoted ADJ(S), as the set of
vertices adjacent to some vertex in S. A vertex with no incident edges is said to be iso-
lated, while a pair of edges incident with a common vertex are said to be adjacent.

The degree of a vertex v, denoted by deg(v), is the number of edges incident with
v. If we arrange the vertices of G, v, ..., v,, so their degrees are in nondecreasing or-
der of magnitude, the sequence (deg(v,), . .., deg(v,)) is called the degree sequence of
G. We denote the minimum degree of a vertex in G by min(G) and the maximum de-
gree of a vertex in G by max(G). There is a simple relationship between the degrees of
a graph and the number of edges.

Theorem (Degree Sum). The sum of the degrees of a graph G(V, E) satisfies
\4
> deg(v;) = 2|E]|.
i=1

The proof follows immediately from the observation that every edge is incident
with exactly two vertices. Though simple, this result is frequently useful in extending
local estimates of the cost of an algorithm in terms of vertex degrees to global estimates
of algorithm performance in terms of the number of edges in a graph.

A subgraph S of a graph G(V,E) is a graph S(V', E") such that V' is contained in
V, E’ is contained in E, and the endpoints of any edge in E' are also in V'. A subgraph
is said to span its set of vertices. We call S a spanning subgraph of G if V' equals V.
We call S an induced subgraph of G if whenever u and v are in V' and (u,v) is in E,
(u,v) is also in E'. We use the notation G — v, where v is in V(G), to denote the in-
duced subgraph of G on V-{v}. Similarly, if V' is a subset of V(G), then G — V' de-
notes the induced subgraph on V — V'. We use the notation G — (u, v), where (u,v)
is in E(G), to denote the subgraph G(V,E — {(u,v)}). If we add a new edge (u,v),
where u and v are both in V(G) to G(V,E), we obtain the graph G(V,E U {(u, v)}),
which we will denote by G(V,E) U (u,v). In general, given a pair of graphs
G(V,,E)) and G(V,, E,), their union G(V,,E ) U G(V,, E,) is the graph
GV, UV, E, UE,). If Vi =V, and E| and E, are disjoint, the union is called the
edge sum of G(V\, E)) and G(V,, E;). The complement of a graph G(V, E), denoted by
G*, has the same set of vertices as G, but a pair of vertices are adjacent in the comple-
ment if and only if the vertices are not adjacent in G.

We define a path from a vertex u in G to a vertex v in G as an alternating se-
quence of vertices and edges,

Vi,€1,V2,€2, ... 3651, Vi,

where v; = u, v, = v, all the vertices and edges in the sequence are distinct, and suc-
cessive vertices v; and v;;, are endpoints of the intermediate edge ¢;. If we relax the

2 Introduction to Graph Theory Chap. 1



definition to allow repeating vertices in the sequence, we call the resulting structure a
trail. If we relax the definition further to allow both repeating edges and vertices, we
call the resulting structure a walk. If we relax the definition of a path to allow the first
and last vertices (only) to coincide, we call the resulting closed path a cycle. A graph
consisting of a cycle on n vertices is denoted by C(n). If the first and last vertices of a
trail coincide, we call the resulting closed trail a circuit. The length of a path, trail,
walk, cycle, or circuit is its number of edges.

We say a pair of vertices u and v in a graph are connected if and only if there is
a path from u to v. We say a graph G is connected if and only if every pair of vertices
in G are connected. We call a connected induced subgraph of G of maximal order a
component of G. Thus, a connected graph consists of a single component. The graph in
Figure 1-1 has two components. A graph that is not connected is said to be dis-
connected. If all the vertices of a graph are isolated, we say the graph is rotally
disconnected.

A vertex whose removal increases the number of components in a graph is called
a cut-vertex. An edge whose removal does the same thing is called a bridge. A graph
with no cut-vertex is said to be nonseparable (or biconnected). A maximal nonsepa-
rable subgraph of a graph is called a block (biconnected component or bicomponent).
In general, the vertex connectivity (edge connectivity) of a graph is the minimum num-
ber of vertices (edges) whose removal results in a disconnected or trivial graph. We call
a graph G k-connected or k-vertex connected (k-edge connected) if the vertex (edge)
connectivity of G is at least k.

If G is connected, the path of least length from a vertex u to a vertex v in G is
called the shortest path from u to v, and its length is called the distance from u to v.
The eccentricity of a vertex v is defined as the distance from v to the most distant vertex
from v. A vertex of minimum eccentricity is called a center. The eccentricity of a cen-
ter of G is called the radius of G, and the maximum eccentricity among all the vertices
of G is called the diameter of G. We can define the nth power of a connected graph
G(V,E), denoted by G" as follows: V(G") = V(G), and an edge (u,v) is in E(G") if
and only if the distance from u to v in G is at most n. G* and G* are called the square
and cube of G, respectively.

If we impose directions on the edges of a graph, interpreting the edges as ordered
rather than unordered pairs of vertices, we call the corresponding structure a directed
graph or digraph. In contrast and for emphasis, we will sometimes refer to a graph as
an undirected graph. We will follow the usual convention in graph theory of denoting
an edge from a vertex u to a vertex v by (i, v), leaving it to the context to determine
whether the pair is to be considered ordered (directed) or not (undirected). The first
vertex u is called the initial vertex or initial endpoint of the edge, and the second vertex
is called the terminal vertex or terminal endpoint of the edge. If G is a digraph and
(u,v) an edge of G, we say the initial vertex u is adjacent to v, and the terminal vertex
v is adjacent from u. We call the number of vertices adjacent to v the in-degree of v,
denoted indeg(v), and the number of vertices adjacent from v the out-degree of v, de-
noted outdeg(v). The Degree Sum Theorem for graphs has the obvious digraph analog.

Theorem (Digraph Degree Sum). Let G(V,E) be a digraph; then
V|

> indeg(v;) = 2 outdeg(v;) = |E|.

i=1

Sec. 1-1 Basic Concepts 3



Generally, the terms we have defined for undirected graphs have straightforward
analogs for directed graphs. For example, the paths, trails, walks, cycles, and circuits
of undirected graphs are defined similarly for directed graphs, with the obvious refine-
ment that pairs of successive vertices of the defining sequences must determine edges
of the digraph. That is, if the defining sequence of the directed walk (path, etc.) in-
cludes a subsequence v;, e;, v;4|, then ¢; must equal the directed edge (v;, v;4). If we
relax this restriction and allow e; to equal either (v;, v,y ) or (vi4+, v;), we obtain a semi-
walk (semipath, semicycle, and so on).

A digraph G(V,E) is called strongly connected, if there is a (directed) path be-
tween every pair of vertices in G. A vertex u is said to be reachable from a vertex v in
G, if there is a directed path from v to u in G. The digraph obtained from G by adding
the edge (v, u) between any pair of vertices v and u in G whenever u is reachable from
v (and (v, u) is not already in E(G)) is called the transitive closure of G.

There are several other common generalizations of graphs. For example, in a
‘multigraph, we allow more than one edge between a pair of vertices. In contrast, an or-
dinary graph that does not allow parallel edges is sometimes called a simple graph. In a
loop graph, both endpoints of an edge may be the same, in which case such an edge is
called a loop (or self-loop). If we allow both undirected and directed edges, we obtain a
so-called mixed graph.

Special graphs. Various special graphs occur repeatedly in practice. We will
introduce the definitions of some of these here, and examine them in more detail in
later sections.

A graph containing no cycles is called an acyclic graph. A directed graph con-
taining no directed cycles is called an acyclic digraph, or sometimes a Directed Acyclic
Graph (DAG). Perhaps the most commonly encountered special undirected graph is the
tree, which we define as a connected, acyclic graph. An arbitrary acyclic graph is
called a forest. Thus, the components of a forest are trees. We will consider trees and
acyclic digraphs in Chapter 4.

A graph of order N in which every vertex is adjacent to every other vertex is
called a complete graph, and is denoted by K(N). Every vertex in a complete graph has
the same full degree. More generally, a graph in which every vertex has the same, not
necessarily full, degree is called a regular graph. If the common degree is r, the graph
is called regular of degree r.

A graph that contains a cycle which spans its vertices is called a hamiltonian
graph. These graphs are the subject of an extensive literature revolving around their
theoretical properties and the algorithmic difficulties involved in efficiently recognizing
them. A graph that contains a circuit which spans its edges is called an eulerian graph.
Unlike hamiltonian graphs, eulerian graphs are easy to recognize. They are merely the
connected graphs all of whose degrees are even. We will consider them later in this
chapter. o

A graph G(V, E) (or G(V}, V5, E)) is called albipartite graph or bigraph if its ver-
tex set V is the disjoint union of sets V| and V,, and every edge in E has the form
(vi,v2), where vi € V| and v, € V,. A complete bipartite graph is a bigraph in which
every vertex in V) is adjacent to every vertex in V,. A complete bigraph depends only
on the cardinalities M and N of V| and V), respectively, and so is denoted by K(M,N).
Generally, we say a graph G(V, E) or G(V,, ..., V,,E) is k-partite if the vertex set V is
the union of k disjoint sets V,, ..., V,, and every edge in E is of the form (v;, v;), for

4 Introduction to Graph Theory Chap. 1



4] V3
Va v,

(a) Cyclic and bipartite presentations of C(4).

V,=1v,, va)

=3 1
Vo, =1y, Vy

vy V3

Vi Vg V3
O I I I
Vg Vo Ve

Vg Vg Ve

>

={ !
V=1V, V3, Vg

V,= JIVQ: Va, Vg y
(b) Different presentations of a bipartite graph G (V,, V,, E).

Figure 1-2. Bipartite and nonbipartite graphs.

vertices v; € V; and v; € V;, V; and V; distinct. A complete k-partite graph is defined
similarly. We refer to Figure 1-2 for an example.

Graphs as models. We will describe many applications of graphs in later
chapters. The following are illustrative.

Assignment Problem. Bipartite graphs can be used to model problems where
there are two kinds of entities, and each entity of one kind is related to a subset of enti-
ties of the other. For example, one set may be a set V; of employees and the other a set
V, of tasks the employees can perform. If we assume each employee can perform some
subset of the tasks and each task can be performed by some subset of the employees,
we can model this situation by a bipartite graph G(V,, V,, E), where there is an edge
between v, in V; and v, in V, if and only if employee v, can perform task v,.

We could then consider such problems as determining the smallest number of em-
ployees who can perform all the tasks, which is equivalent in graph-theoretic terms to
asking for the smallest number of vertices in V| that together are incident to all the ver-
tices in V,, a so-called(covering problem (see Chapter 8). Or, we might want to know
how to assign the largest number of tasks, one task per employee and one employee per
task, a problem which corresponds graph-theoretically to finding a maximum size regu-
lar subgraph of degree one in the model graph, the so-called(matching problem. Sec-
tion 1-3 gives a condition for the existence of matchings spanning V,, and Section 1-5
and Chapters 8 and 9 give algorithms for finding maximum matchings on graphs.

Sec. 1-1 Basic Concepts 5



Data Flow Diagrams. We can use directed bipartite graphs to model the flow
of data between the operators in a program, employing a data flow diagram. For this
diagram, we let the data (program variables) correspond to the vertices of one part V,
of the bigraph G(V,,V,), while the operators correspond to the other part V,. We in-
clude an edge from a datum to an operator vertex if the corresponding datum is an input
to the corresponding operator. Conversely, we include an edge from an operator vertex
to a datum, if the datum is an output of the operator. A bipartite representation of the
data flow of a program is shown in Figure 1-3.

A data flow diagram helps in analyzing the intrinsic parallelism of a program. For
example, the length of the longest path in a data flow diagram determines the shortest
completion time of the program, provided the maximum amount of parallelism is used.
In the example, the path X(+:1)P(DIV:2)Q(—:4)S(DIV:6)U is a longest path; so the
program cannot possibly be completed in less than four steps (sequential operations). A
minimum length parallel execution schedule is {1}, {2, 3} concurrently, {4, 5} concur-
rently, and {6}, where the numbers indicate the operators.

Graph isomorphism. For any mathematical objects, the question of their
equality or identity is fundamental. For example, a pair of fractions (which may look
different) are the same if their difference is zero. Just like fractions, a pair of graphs
may also look different but actually have the same structure. Thus, the graphs in
Figure 1-4 are nominally different because the vertices v, and v, are adjacent in one of
the graphs, but not in the other. However, if we ignore the names or labels on the ver-
tices, the graphs are clearly structurally identical. Structurally identical graphs are
called Isomorphic, from the Greek words iso for “same” and morph for “form.” For-
mally, we define a pair of graphs G,(V, E) and G,(V, E) to be isomorphic if there is a
one-to-one correspondence (or mapping) M between V(G,) and V(G,) such that  and v

(1) P=X+Y
(2) Q=YdivP
(3) R=X=*P
(4 S=R-Q
(5) T=R=*P
(6) U=TdivS

(a) Code sequence.

(6) / (4) — (2) / (1) + (3) = (5) =
(b) Data flow diagram for (a).

Figure 1-3. Bipartite data flow model.

6 Introduction to Graph Theory Chap. 1



v, v, Vs W, W, W,

Va Vg Ve Wsg W3 Vg
(a) K(3,3). (b) G.

v, — w,
g —> W
vy —— W,
Vo T Wy
vs —>  wg

Vg —> Wg

(c) Isomorphic mapping from K (3, 3) to G.

Figure 1-4. Isomorphic graphs. Figure 1-5. A pair of isomorphic graphs.

are adjacent in G, if and only if the corresponding vertices M(u) and M(v) are adjacent
in G,. See Figure 1-5 for another example.

To prove a pair of graphs are isomorphic, we need to find an isomorphism be-
tween the graphs. The brute force approach is to exhaustively test every possible one-
to-one mapping between the vertices of the graphs, until we find a mapping that
qualifies as an isomorphism, or determine there is none. See Figure 1-6 for a high-level
view of such a search algorithm. Though methodical, this method is computationally
infeasible for large graphs. For example, for graphs of order N, there are a priori N!
distinct possible 1-1 mappings between the vertices of a pair of graphs; so examining
each would be prohibitively costly. Though the most naive search technique can be im-
proved, such as in the backtracking algorithm in Chapter 2, all current methods for the
problem are inherently tedious.

A graphical invariant (or graphical property) is a property associated with a
graph G(V, E) that has the same value for any graph isomorphic to G. One may fortui-

l No
Get next 1-1 vertex — |s M edge-preserving?
correspondence M

No more Yes

Non-isomorphic Isomorphic

- O

Figure 1-6. Exhaustive search
algorithm for isomorphism.
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(@ Gy (b) G,. Figure 1-7. G, isomorphic to G,?
Vi V2
w, w, Wy W,
V3 Va
Vs Ve
& 0
Ws We wy Wg
Y1 Ve (b) G,
(a) G,

Figure 1-8. G, isomorphic to G,?

tously succeed in finding an invariant a pair of graphs do not share, thus establishing
their nonisomorphism. Of course, two graphs may agree on many invariants and still be
nonisomorphic, although the likelihood of this occurring decreases with the number of
their shared properties. The graphs in Figure 1-7 agree on several graphical properties:
size, order, and degree sequence. However, the subgraph induced in G,(V, E) by the
vertices of degree 2 is regular of degree 0, while the corresponding subgraph in
G(V,E) is regular of degree 1. This corresponds to a graphical property the graphs do
not share; so the graphs are not isomorphic. The graphs in Figure 1-8 also agree on
size, order, and degree sequence. However, G,(V, E) appears to have cycles only of
lengths 4, 6, and 8, while G,(V, E) has cycles of length 5. One can readily show that
G, is bipartite while G, is not, so these graphs are also nonisomorphic.

1-2 REPRESENTATIONS

There are a variety of standard data structure representations for graphs. Each represen-
tation facilitates certain kinds of access to the graph but makes complementary kinds of
access more difficult. We will describe the simple static representations first. The
linked representations are more complicated, but more economical in terms of storage
requirements, and they facilitate dynamic changes to the graphs.

8 Introduction to Graph Theory Chap. 1



