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Preface

This book may be considered as a continuation of the monographs [T83], [T92], [T06].
Now we are mainly interested in spaces on domains in R”, related wavelet bases and
wavelet frames, and extension problems. But first we deal in Chapter 1 with the usual
spaces on R", periodic spaces on R” and on the n-torus T" and their wavelet expansions
under natural restrictions for the parameters involved. Spaces on arbitrary domains are
the subject of Chapter 2. The heart of the exposition are the Chapters 3, 4, where
we develop a theory of function spaces on so-called thick domains, including wavelet
expansions and extensions to corresponding spaces on R”. This will be complemented
in Chapter 5 by spaces on smooth manifolds and smooth domains. Finally we add in
Chapter 6 a discussion about desirable properties of wavelet expansions in function
spaces introducing the notation of Riesz wavelet bases and frames. This chapter deals
also with some related topics, in particular with spaces on cellular domains.

Although we rely mainly on [T06] we repeat basic notation and a few classical
assertions in order to make this text to some extent independently understandable and
usable. More precisely, we have two types of readers in mind:

researchers in the theory of function spaces who are interested in wavelets as
new effective building blocks, and

scientists who wish to use wavelet bases in classical function spaces in diverse
applications.

Here is a guide to where one finds basic definitions and key assertions adapted to the
second type of readers:

1. Classical Sobolev spaces ka([R”), Sobolev spaces Hj,(R"), classical Besov
spaces B, (R") and Holder-Zygmund spaces €°(R") on the Euclidean n-spaces
R": Definition 1.1, Remark 1.2, p. 2.

2. Wavelets in R": Section 1.2.1, p. 13.

3. Wavelet bases for spaces on R”: Theorem 1.20, p. 15.

4. Spaces on the n-torus T”: Definition 1.27, Remark 1.28, p. 21.
5. Wavelet bases for spaces on T": Theorem 1.37, p. 26.

6. Spaces on arbitrary domains 2 in R”: Definitions 2.1, 5.17, Remark 2.2, pp. 28,
29, 147.

7. u-wavelet systems in domains €2 in R”: Definitions 2.4, 6.3, pp. 32, 179.

8. u-Riesz bases and u-Riesz frames: Definition 6.5, Section 6.2.2, pp. 180, 202.
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9. Waveletbasesin L,(£2) and L, (£2) inarbitrary domains €2 in R”: Theorems 2.33,
2.36, 2.44, pp. 49, 53, 59.

10. Classes of domains €2 in R” and their relations: Definitions 3.1, 3.4, 5.40, 6.9,
Proposition 3.8, pp. 70, 72, 75, 168, 182.

11. Wavelet bases in E-thick domains (covering bounded Lipschitz domains) 2
in R": Theorems 3.13, 3.23, Corollary 3.25, pp. 80, 89, 91.

12. Spaces, frames and bases on manifolds: Definitions 5.1, 5.5, 5.40, Theorems 5.9,
5.37, pp. 133, 135, 136, 164, 168.

13. Frames and bases on domains: Definition 5.25, Theorems 5.27, 5.35, 5.38,5.51,
6.7, 6.30, 6.32, 6.33, pp. 152, 153, 162, 166, 175, 181, 196, 197, 198.

Formulas are numbered within chapters. Furthermore in each chapter all defini-
tions, theorems, propositions, corollaries and remarks are jointly and consecutively
numbered. Chapter 7 is divided in sections n.k and subsections n.k./. But when
quoted we refer simply to Section 1.k or Section n.k.l instead of Section n.k or Sub-
section n.k.[. If there is no danger of confusion (which is mostly the case) we write
Apys Bpgs Fpgs s apy - (spaces) instead of A, o, By o, F 4, ..., ap, 4 ... Similarly for
AjmsAjm, Qjm (functions, numbers, cubes) instead of @, Aj m, Q) m etc. References
are ordered by names, not by labels, which roughly coincides, but may occasionally
cause minor deviations. The numbers behind » in the Bibliography mark the page(s)
where the corresponding entry is quoted (with the exception of [T78]-[T06]).

It is a pleasure to acknowledge the great help I have received from David Edmunds
(Brighton) who looked through the manuscript and offered many comments.

Jena, Summer 2008 Hans Triebel
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Chapter 1
Spaces on R” and T"

1.1 Definitions, atoms, and local means
1.1.1 Definitions

We use standard notation. Let N be the collection of all natural numbers and Ng =
N U {0}. Let R” be Euclidean n-space, where n € N. Put R = R!, whereas C is the
complex plane. Let S(R") be the usual Schwartz space and S’(R") be the space of all
tempered distributions on R”. Furthermore, L,(R") with 0 < p < oo, is the standard
quasi-Banach space with respect to the Lebesgue measure in R”, quasi-normed by

1/p
17 1L, @0 = ([ 17l ax) (L

with the natural modification if p = oco. As usual, Z is the collection of all integers;
and Z" where n € N, denotes the lattice of all points m = (m,,...,m,) € R" with
m; € Z. Let N, where n € N, be the set of all multi-indices,

a=(a1....,ap) witha; € Noand || =3 7_; ;. (1.2)
Ifx = (x1,...,7 xp) € R" and B = (B1,...,Bn) € Nj then we put
xB = xf" ~-xf" (monomials). (1.3)

If ¢ € S(R") then

G(€) = (Fo)(§) = (271)_"/2/ e p(x)dx, £eR", (1.4)
[RII

denotes the Fourier transform of ¢. As usual, F~'¢ and ¢" stand for the inverse

Fourier transform, given by the right-hand side of (1.4) with 7 in place of —i. Here

x£ denotes the scalar product in R”. Both F and F~! are extended to S'(R") in the

standard way. Let ¢p € S(R") with

wo(x)=1if |x] <1 and ¢o(y) =0 if |y| > 3/2. (1.5)
and let
ok (X) = 0o(27%x) —o(27**1x), xeR" ke N. (1.6)
Since
oo
ngj(x) =1 forx eR", (1.7)

J=0



2 1 Spaces on R” and T"

the ¢; form a dyadic resolution of unity. The entire analytic functions (¢, f )Y (x) make

sense pointwise in R” for any f € S'(R").

Definition 1.1. Let ¢ = {¢;}?2, be the above dyadic resolution of unity.
J3j=0

(1) Let
O<p<oo, 0<g=<oo, seR.

Then B, (R") is the collection of all f € S’(R™) such that

[0 e] ) R l/
1/ 1B ®lly = (3270 /)" L&) < 00

Jj=0

(with the usual modification if g = 00).
(ii) Let
O<p<oo, O0<g=<oo, sekR

Then Fj,(R") is the collection of all f € S’(R") such that

< o0

17 1B @l = [ (32229 [t /1Y )17) " Ly 87
Jj=0

(with the usual modifications if ¢ = o0).

(1.8)

(1.9)

(1.10)

(1.11)

Remark 1.2. The theory of these spaces may be found in [T83], [T92], [T06]. In
particular these spaces are independent of admitted resolutions of unity ¢ according to
(1.5)—(1.7) (equivalent quasi-norms). This justifies our omission of the subscript ¢ in
(1.9), (1.11) in the sequel. We remind the reader of a few special cases and properties

referring for details to the above books, especially to [T06], Section 1.2.
(i) Let 1 < p < oo. Then

Ly(R") = Fp,(R")

is a well-known Paley—Littlewood theorem.
(i) Let 1 < p < coand k € Ng. Then

Wy (R") = Fy5(R")
are the classical Sobolev spaces usually equivalently normed by
1/p
IF W@ = (3 1D f 1L, @®IP) .
la| <k

This generalises (1.12).
(iii) Let 0 € R. Then

Io: f > ((8)°f)7

(1.12)

(1.13)

(1.14)

(1.15)
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with (§) = (1 + |£]?)'/2, is an one-to-one map of S(R") onto itself and of S’(R")
onto itself. Then /, is a lift for the spaces A;q([R") withA = BorA = F ands € R,
0 < p <00 (p < oo for the F-scale), 0 < g < oo:

Io A3, (R") = AS.°(R") (1.16)

(equivalent quasi-norms). With

H;([R") =I1_4L,(R"), seR 1<p<oo, (1.17)
one has

H;;([R") = FPS,Z(IR"), seER, 1< p<oo, (1.18)
and

HY(®R™) = WKR™), 1< p<oo. keNo. (1.19)

Nowadays one calls the H,(R") Sobolev spaces (sometimes fractional Sobolev spaces

or Bessel-potential spaces) with the classical Sobolev spaces Wp" (R™) as a special case.
(iv) We denote

€Y (R") = Bi o(R"), seR, (1.20)
as Holder—Zygmund spaces. Let

(A N)X) = flx+h)— ), (A ) = A} (ALHK). 2D

where x € R", h € R", [ € N, be the iterated differences in R”. Let0 < s <m € N.
Then

If 1€ (R™)[lm = sup [f(x)] + sup |A|*|AF f(x)], (1.22)
xeR”
where the second supremum is taken over all x € R” and 4 € R” with 0 < || < 1,
are equivalent norms in €*(R").
(v) This assertion can be generalised as follows. Once more let0 < s <m € N
and 1 < p,q < oo. Then

dh 1/q
nf|B;,q<rR")nm=nf1LpuR")u+(/ AT Ly (RO )

lhl< |2 |"
(1.23)
and

1 d 1/q
1 1BS, (R L, = lIfILp([R")II+(f0 1754 sup ||A;,"f|Lp(ue")uq—’) (1.24)

h| <t !

(with the usual modification if ¢ = 0o) are equivalent norms in B, (R"). These are
the classical Besov spaces. We refer to [T92], Chapter 1, and [T06], Chapter 1, where
one finds the history of these spaces, further special cases and classical assertions. In
addition, (1.23), (1.24) remain to be equivalent quasi-norms in

B;,(R") with0 < p,g <ocands >n(3—1),. (1.25)
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1.1.2 Atoms

We give a detailed description of atomic representations of the spaces introduced in
Definition 1.1 for two reasons. First we need these assertions later on. Secondly, atoms
and local means, which are the subject of Section 1.1.3, are dual to each other where
the natural smoothness assumptions and the cancellation conditions change their roles.

Let Qj,, be cubes in R” with sides parallel to the axes of coordinates, centred at
2=/ m with side-length 2=/+! where m € Z" and j € Ny. If Q is a cube in R” and
r > O then rQ is the cube in R” concentric with Q and with side-length r times of the
side-length of Q. Let y;n, be the characteristic function of Q.

Definition 1.3. Let 0 < p < 00, 0 < g < oo. Then by, is the collection of all
sequences
A={ljmeC: jeNy, meZ"} (1.26)

such that

= q/p\1/q
M 1Bpgll = (3 D Aiml?) ) " < ox. (1.27)

Jj=0 mezZ"

and f,4 is the collection of all sequences A according to (1.26) such that

I3 gl = [ (27797 Wy 1m0 1Ly @] <00 (128)
Jsm

with the usual modifications if p = oo and/or g = oo.

Remark 1.4. Note that the factor 279/ in (1.28) does not appear if one relies on the
p-normalised characteristic function )(jfn)(x) = 2"U~D/Py, . (x). This is the usual
way to say what is meant by f,,. But for what follows the above version seems to be
more appropriate. Of course by, = fpp.

Definition 1.5. Lets € R,0 < p < 00, K € Ng, L € Ng and d > 1. Then the
L x-functions a;,, : R” — C with j € No, m € Z", are called (s, p)-atoms if

suppajm Cd Qjm, Jj € No, meZ"; (1.29)
there exist all (classical) derivatives D%a;,, with |o| < K such that
|D%ajm(x)| < 2776~ PHlel g < K, j e Ng. meZ”, (1.30)

and
/ xﬂaj,,,(x)dxzo. Bl <L, jeN meZ". (1.31)

Remark 1.6. No cancellation (1.31) for ag , is required. Furthermore, if L = 0
then (1.31) is empty (no condition). If K = 0 then (1.30) means a;,, € L and

lajm(x)| < 27/6=%). Of course, the conditions for the above atoms depend not only



1.1 Definitions, atoms, and local means 5

on s and p, but also on the given numbers K, L,d. But this will only be indicated
when extra clarity is required. Otherwise we speak about (s, p)-atoms instead of
(s. p)k.L.4-atoms. Let as usual

1 1
Op, =h ——1) and o =n(+—]) (1.32)
? (p + P min(p.q) /+
where by = max(b,0) if b € R.

Theorem 1.7. (i) Let0 < p < 00,0 <qg <00, s € R. Let K € Ng, L € No, d € R
with
K>s, L>op-—sy, (1.33)

and d > 1 be fixed. Then f € S'(R") belongs to B;q([R") if, and only if, it can be

represented as
o0
f= Z Z Ajm Ajm (1.34)

Jj=0meZ"n

where the aj, are (s, p)-atoms (more precisely (s, p)k,L,4-atoms) according to Defi-
nition 1.5 and A € bpy. Furthermore

IS 1Bpg (R™)|| ~ inf [|A |bpg I (1.35)

are equivalent quasi-norms where the infimum is taken over all admissible representa-
tions (1.34) (for fixed K, L, d).
(i) Let0 < p<00,0<g <00, 5€R Let K€ Ng, L €Ng,d € R with

K>s, L>opg—s, (1.36)

and d > 1 be fixed. Then f € S'(R") belongs to Flfq(lR") if, and only if, it can be
represented by (1.34) where aj,, are (s, p)-atoms (more precisely (s, p)k,L.4-atoms)
according to Definition 1.5 and A € fpq. Furthermore,

IS 1 Fpq (R*)]| ~ inf A | fpq I (1.37)

are equivalent quasi-norms where the infimum is taken over all admissible representa-
tions (1.34) (for fixed K, L, d).

Remark 1.8. Recall that dQ ,, are cubes centred at 27/ m with side-length d 27/ +!
where j € No and m € Z". For fixed d with d > 1 and j € Ng there is some
overlap of the cubes dQ,, where m € Z". This makes clear that Theorem 1.7 based
on Definition 1.5 is reasonable. Otherwise the above formulations coincide essentially
with [T06], Section 1.5.1. There one finds also some technical comments how the
convergence in (1.34) must be understood. Atoms of the above type go back essentially
to [FrJ85], [FrJ90]. But more details about the complex history of atoms may be found
in [T92], Section 1.9.
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1.1.3 Local means

We wish to derive estimates for local means which are dual to atomic representations
according to Theorem 1.7 as far as smoothness assumptions and cancellation properties
are concerned. First we collect some definitions. Let O, be the same cubes as in the
previous Section 1.1.2.

Definition 1.9. Let A € No, B € Ng and C > 0. Then the Lo-functions k,, : R" —
C with j € No, m € Z", are called kernels (of local means) if

suppkjm C CQjm, j € No, meZ"; (1.38)
there exist all (classical) derivatives D%k, with || < A such that
|D%kjm(x)| < 27771l o < A, j € Nog, m € Z", (1.39)
and

/ XPkjm(x)dx =0, |B|<B. jeN meZ" (1.40)
R”

Remark 1.10. No cancellation (1.40) for kg, is required. Furthermore if B = 0 then
(1.40) is empty (no condition). If 4 = 0then (1.39) means k;,, € Lo and |k, (x)| <
2in Compared with Definition 1.5 for atoms we have different normalisations in (1.30)
and (1.39) (also due to the history of atoms). We adapt the sequence spaces introduced
in Definition 1.3 in connection with atoms to the above kernels.

Definition 1.11. Lets € R, 0 < p < 00,0 < g < co. Then b}, is the collection of
all sequences A according to (1.26) such that

14165, = (sz“‘ﬂ”( Y ) ) <o aan

meZn

and f_psq is the collection of all sequences A according to (1.26) such that

11750 = [ (22 i sim)17) Ly ®) | <00 (142)
Jm

with the usual modification if p = oo and/or g = oo

Remark 1.12. The notation b,, and f,, (without bar) will be reserved for a slight

modification of the above sequence spaces in connection with wavelet representations.
One has b5 fpp

Definition 1.13. Let f € B;q(IR") where s € R,0 < p < 00,0 < g < o0. Letkj,,
be the kernels according to Definition 1.9 with 4 > o, — s where o, is given by (1.32)
and B € Ng. Then

kim(F) = (. kjm) = [R kim() f)dy. j€No.meZ®  (143)
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are local means, considered as a dual pairing within (S(R"), S’(R")). Furthermore,

k(f) = {kjm(f): j € No, m e Z"}. (1.44)

Remark 1.14. We justify the dual pairing (1.43). According to [T83], Theorems 2.11.2,
2.11.3, one has for the dual spaces of Bj,(R") that

Bs,(R"Y = B 77 (R"), x€R, 0<p <o, (1.45)

where i i
—+—=1 if l<p<ocand p’=00if 0 < p <1 (1.46)

V4 p

Since k;p € CA(R") (Loo(R™) if A = 0) has compact support one obtains that
kjm € BA~¢(R") forany e > 0and 0 < u,v < co. By

= 1
BS,(R") C B5*(R") and BS,(R") C BS*(R") (1.47)

locally forany s € R, e > 0,0 < p < coand 0 < ¢ < oo one has by (1.45) and
A > o0, — s that (1.43) makes always sense as a dual pairing. This applies also to
f e Flfq(UE") since
Fou(R™) C B;,max(p,q)([k"). (1.48)
But (1.43) can also be justified for f € B;,q([R") and f € Flfq([R") as in [T06],
Section 5.1.7, by direct arguments.
In Section 1.2 we characterise the spaces B;,q([R") and F psq([R") in terms of wavelets.
Since wavelets are special atoms one has by Theorem 1.7 the desired estimates from
above. But wavelets can also be considered as kernels k;,, of corresponding local

means. This gives finally the needed estimates from below which will be reduced to
the following theorem which might be considered as the main assertion of Section 1.1.

Theorem 1.15. (i) Let0 < p < 00,0 < g <00, s € R. Let kjn, be kernels according
to Definition 1.9 where A € Ngy, B € Ny with

A>o0,—s. B>s, (1.49)

and C > 0 are fixed. Let k(f) be as in (1.43), (1.44). Then for some ¢ > 0 and all
f € B, (R™), _
k() 155, < e L 1B, (R (150)

(i) Let0 < p < 00,0 < g < 00,5 € R Let ki and k(f) be the above kernels
where A € Ng, B € Ng with

A>o0pg—s, B>y, (1.51)

and C > 0 are fixed. Then for some ¢ > 0 and all f € F;,(R"),

k() 1S5l < e lLf 1F5, (R (1.52)



