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CHALLENGES IN THE ACCURATE NUMERICAL SIMULATION OF
PRACTICAL THERMAL PROCESSES AND SYSTEMS

Yogesh Jaluria
Board Of Governors Professor, Department of Mechanical & Aerospace Engineering, Rutgers
University, Piscataway, NJ 08854, USA. jaluria@jove.rutgers.edu

ABSTRACT

The numerical simulation of practical thermal processes is generally complicated because of
multiple transport mechanisms and complex phenomena that commonly arise. In addition, the
materials encountered are often not easily characterized and typically involve large property
changes over the ranges of interest. The boundary conditions may not be properly defined and or
may be unknown. The geometry and interactions between different components are also often quite
complicated. However, it is important to obtain accurate and dependable numerical results from the
simulation in order to study, design, and optimize most practical thermal processes of current and
future interest. The models employed must be validated and the accuracy of the simulation results
established if the simulation is to form the basis for improving existing systems and developing new
ones in applications areas such as energy, manufacturing, environmental control, electronics cooling,
and transportation. This paper focuses on the main challenges that are encountered in obtaining
accurate numerical simulation results on practical thermal processes and systems. It considers a
wide variety of systems, ranging from materials processing to energy and cooling. Of particular
interest are concerns like verification and validation, imposition of appropriate boundary conditions,
and modelling of complex, multimode transport phenomena in multiple scales. Additional effects
such as viscous dissipation, surface tension, buoyancy and rarefaction that could arise and
complicate the modelling are discussed. Uncertainties that arise in material properties and in
boundary conditions are also important in design and optimization. Large variations in the geometry
and coupled multiple regions are also discussed. The methods that may be used to meet these
challenges are discussed, along with typical results for a range of important processes. Future needs
in this interesting and challenging area are also outlined.

Key Words: Thermal processes, thermal systems, numerical simulation, accuracy, challenges
1. INTRODUCTION

Numerical modelling of thermal processes that are of interest in important applications such as
those related to energy, manufacturing, transportation, aerospace, heating, cooling, and to the
environment is critical to a detailed study of the resulting phenomena and to the design and
optimization of the relevant systems. Most of these practical circumstances are much too
complicated to be investigated by analytical methods. Also, relatively limited data are usually
available from existing processes and from appropriate experimental studies, which are often
expensive and time consuming. In most cases, mathematical models of the processes and systems
are developed, followed by numerical modelling and simulation. The models are validated by
means of available analytical and experimental results and the numerical simulation is then used to
provide the extensive numerical data needed for characterizing the processes and for design, control
and optimization [1-3].

Most practical thermal processes and systems involve complex, coupled, transport mechanisms and
interacting subsystems that constitute the overall system. As a consequence, several challenges are
commonly encountered in obtaining accurate results from the numerical simulation of these systems.
Some of the most important challenges are material properties, accurate imposition of boundary
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conditions, validation, combined mechanisms, complex phenomena, multiple scales, multi-
objective optimization, uncertainties and other additional effects and complexities. This paper
considers some of these aspects, presents examples where these considerations are of particular
importance and discusses possible approaches to meet these challenges.

As examples of typical practical thermal systems, consider the systems shown in Fig. 1. This figure
shows sketches of the fabrication process for a hollow optical fiber, an electronic system cooled by
microchannel flow and two configurations of chemical vapour deposition (CVD) reactors for thin
film fabrication. These systems involve many of the complexities mentioned above. For instance,
material properties of glass in optical fiber drawing are strong functions of temperature, combined
modes of radiation, conduction and convection operate at various stages in the process, non-
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FIGURE 1. Common thermal processes and systems: (a) Hollow fiber drawing; (b) Microchannel
flow for electronic cooling and (c) and (d) Chemical vapor deposition (CVD) systems for thin film
fabrication.

Newtonian fluids are generally used for the fiber coating process and large changes in glass
diameter occur in the draw furnace [4]. Similarly, the microchannel flow in electronic cooling is
coupled with the system simulation at a much larger length scale. CVD involves chemical kinetics,
which vary strongly with temperature and concentration [5]. The boundary conditions are fairly
complicated in all cases and combined transport mechanisms are of interest. Similar considerations
arise in other practical processes, as outlined later in this extended abstract and in the presentation.
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A brief discussion of the challenges posed by the complexities in practical systems is given in this
paper, considering a few selected examples such as the ones shown in Fig. 1.

2. NUMERICAL MODELING OF PRACTICAL PROCESSES

Let us consider the basic characteristics of mathematical and numerical modelling of typical
thermal processes and systems. Considering the optical fiber drawing process, the flow of the glass
and of the aiding purge gas in a cylindrical furnace is assumed to be axisymmentric. The governing
equations for the glass and the gas are then given as,

@4_12(1):0 (1)
oz r ©Or
Q+u@+v@=—la—p+li ru(—a—v+@) +2£(v§v—) @)
ot or oz poz ror or oz oz\ oz
Oou Ou Ou 1dp 2 6( 6u) o (Bv ou 2vu
—tU—FV—=———t——|rO— [+ — | —+— | |- 3)
o o & por ror\ or) é&z| \or oz r?
eTr or ory 190 ory o or
TIPSOl ) [ ghuiudil PP il
pCp( ot +u6r+v62) rarLr 6rj+6z[K 62)+¢+S' @

Where u, v are the velocity components in the axial and radial directions, z and, r, respectively, p is
the local pressure, T the temperature, t the time, v the kinematic viscosity, p the density, K the
thermal conductivity, C, the specific heat at constant pressure, @ is the viscous dissipation term
and S, is the radiation source term. For glass, the material properties are strong functions of the
temperature T. They also vary with composition and changes in the microstructure, the main effect
being on the radiation properties. The variation in the viscosity is the most critical one for the flow,
since it varies quite dramatically with temperature. An equation based on the curve fit of available
data for kinematic viscosity v is written for silica, in S.1. units, as

v =454545exp [ 32 (Trr-l]-elt -] 5)
indicating the strong, exponential, variation of L with temperature. Here, Tpe is the glass softening
temperature, being around 1900 K for silica glass. The radiative source term S, in Eq. (4) is non-zero for
the glass preform/fiber because glass emits and absorbs energy. The variation of the absorption
coefficient with wavelength A can often be approximated in terms of bands with constant absorption
over each band. Because of the small fiber diameter, being around 125 pm, there is a temptation to
assume uniform temperature across the fiber. However, because of the high temperature dependence of
the viscosity, this assumption does not yield accurate results and a large number of grid points,
typically around 50, are needed across the fiber radius of around 62.5 pm to capture changes in
temperature and the consequent effects on properties, viscous dissipation, thermally induced defects,
and dopant movement.

Similarly, the fiber coating process may be modeled. Typical coating thicknesses are of the order of 40-
50 um and are applied to the uncoated fiber or as secondary coating to a coated fiber. The basic coating
process involves drawing the fiber of diameter around 125 pm through a reservoir of coating fluid, with
inlet and outlet dies. This is immediately followed by a curing process of the polymer coating material
around the fiber. A balance between surface tension, viscous, gravitational, and pressure forces results
in an upstream meniscus at the cup entrance, as well as a downstream meniscus at the die exit. At high
speeds, the upper meniscus breaks down and air is entrained into the coating. The use of high draw
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rates requires consideration of alternate pressurized applicator designs, where pressure induced motion
of the coating material is used to reduce the shear at the fiber surface and helps in the establishment of a
stable free surface flow. The control of the coating characteristics is of major concemn in industry.
These considerations have become particularly important as the coating speeds have been increased to
values beyond 20 m/s to enhance productivity and as the interest in specialty fibers and fibers of
different materials, including polymer fibers, has grown. The physical properties of the polymer
coating materials, particularly the viscosity, and their dependence on temperature are of primary
importance in the coating process. Surface tension has a significant effect on the flow near the free
surface, which represents the interface between a liquid and a gas in many cases, and on the shape,
stability and other characteristics of the interface.

Similarly, consider an electronic component cooled by the microchannel single-phase flow of a coolant,
as shown in Fig. 1{b). Depending on the fluid, dimensions and operating conditions, the Knudsen
number for the flow may be determined, leading to continuum flow, slip flow or molecular flow [6].
The overall system, on the other hand, is at engineering, or macro-scale, and can be modeled using
the usual conservation equations, The typical equations are of the form:

Mass:
V-(p¥)=0 ©)
Momentum:
V-V(pV)=-Vp+V-(uVV) %)
Energy:
V-V(pC,T)=V-(kVT) ®)

where | is the dynamic viscosity, k is the fluid thermal conductivity and V is the velocity vector.
For the solid region, the conduction equation is used, with thermal conductivity of the solid k, as

é ,, 0T
—(k=)=0 9
5 0 ©)

For conjugate problem, the heat conduction in the solid region and the flow in the fluid region are
solved separately and then coupled at the solid—fluid interface.

The chemical kinetics plays a critical tole in the deposition of material from the gas phase in
chemical vapor deposition systems [5]. The concentrations of the chemical species in the reactor
affect the chemical kinetics, which in turn affect the deposition. In many cases, the process is
chemical kinetics limited, implying that the transport processes are quite vigorous and the
deposition is restricted largely by the kinetics. The chemical kinetics for several materials is
available in the literature. For instance, the chemical kinetics for the deposition of Silicon from
Silane (SiH4) with Hydrogen as the carrier gas in a CVD reactor is given by the expression [7]

£ = K, Psina (10)
Y+ K\ pyy + Ky Psina

where the surface reaction rate 12' is in mole of Si/mzs, Ko = A exp (-E/RT), E being the activation
energy, and A, K1, and K2 are constants which are obtained experimentally. The p's are the partial

pressures of the two species in the reactor. However, the chemical processes are typically much
more complicated, with several intermediate reactions in the gaseous phase and several at the
surface. This is particularly true for the deposition of SiC and GaN.
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3. RESULTS AND DISCUSSIONS

A few practical processes and systems have been mentioned in the preceding, along with some of
the challenges faced in an accurate simulation. Several of these are considered in greater detail here,
along with reievant examples. However, only a brief outline and a few selected examples are
considered. Further details and examples will be given in the presentation.

3.1. Material properties, variations and characteristics

The accuracy of any numerical simulation is dependent on the material properties used. This is
particularly critical in practical processes where the properties vary with the local conditions like
temperature and pressure and where changes in the material during the process can affect the
properties. However, property data are often not available to the needed accuracy and often at
conditions that are different from those of the process. This is particularly problematic for the
manufacture of optical fibers which strongly depends on the physical properties of silica glass and
their variation with the temperature T. The exponential dependence of viscosity on temperature was
given earlier. The radiation properties, such as the variation of the absorption coefficient with
wavelength A have been measured for certain compositions and glasses. But these data are often
available only at room temperature, whereas the process is at much higher temperatures. Also, data
may not be available for the particular glass or composition that is being simulated.

Dopants such as rare earth materials are often used to modify the transmission characteristics of
optical fibers and for specialized applications. Even though accurate models may be developed for
the process [8], the data on the effect of the dopants on radiation properties and on viscosity are
very limited [9], as shown here.

15 ] r T T T T =
15
o,
Ta
. GeDy =
e T Y @
T ‘ <
T g
[ - 8o, .
*
' s 0 [ »

FIGURE 2. Effect of various dopants on the refractive index and viscosity of silica glass in the
optical fiber drawing process.

Similarly, the coating process involves non-Newtonian materials and large material property
changes. The fluid viscosity is often taken as

p=po(¥ /7 0)" 1 exp(b/T) (11)

where ¥ is the total strain rate, b the temperature coefficient of viscosity, subscript o indicates
reference conditions and n is the power-law index of the fluid. The jacketing material is thus treated
as a Generalized Newtonian fluid [10]. Other rheological models may also be used, depending on
the fluid. Similarly, chemical kinetics play a critical role in chemical vapor deposition, Simple
equations like the given earlier for Silicon are generally not available or applicable for the wide
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variety of materials of practical interest. A large number of chemical reactions have to be solved in
most cases and, again, the results are strongly affected by the material property and chemical
kinetics employed. Lack of accurate property data is clearly a major hurdle in obtaining accurate
simulation results in this case.

Besides temperature and concentration, the material properties are also often sensitive to the
conditions under which the material is stored as well as the fabrication process, age and raw
materials used. The properties may also change with time, resulting in different values for
experiments done at different times. This is particularly of concern with biological materials,
polymers and chemicals. It is therefore important to know what material and under what conditions
it is being employed so that the appropriate properties can be used in simulation. Also, in some
cases, properties may be measured for more accurate inputs. Interpolation may be used with
available data to obtain the best estimate of the properties under the operating conditions.

3.2. Verification and validation of the mathematical and numerical models

Generally, simplifications and idealizations are employed in the modeling of practical thermal
processes and systems because of the complexities that arise. Therefore, it is critical to verify and
validate the mathematical and numerical models to ensure that the results obtained are applicable,
realistic and accurate [11]. Unless the models are satisfactorily validated, the simulation results cannot
be used as the basis for design and optimization. Among the approaches used are a consideration of the
physical behavior of the results obtained, comparisons with available analytical and numerical results,
particularly benchmark solutions, and comparisons with available experimental data. It is also
important to ensure that the results are essentially independent of the grid and other arbitrarily chosen
numerical parameters.

Because of the critical importance of validation, extensive efforts have to be made to obtain
experimental data, whenever possible, for comparison with numerical predictions. In several cases, a
separate, well-designed, experimental set-up may need to be fabricated to achieve this. In the modeling
and simulation of single and twin-screw polymer extruders, a specially designed cam-driven
thermocouple system was employed to obtain the temperature profile in the rotating screw and two
rotating cylinders were used to study the mixing phenomena and thus validate the model for twin-screw
extrusion [12].

In the manufacture of optical fibers, a polymer coating is applied, as shown in Fig. 1(a), for
protection against abrasion and to increase strength. Typical coating thicknesses are of the order of
40-50 pm and are applied to the uncoated fiber or as secondary coating to a coated fiber. The basic
coating process involves drawing the fiber of diameter around 125 pm through a reservoir of
coating fluid, with inlet and outlet dies. This is immediately followed by a curing process of the
polymer coating material around the fiber. At the die exit, the coating material is drawn out with the
fiber, forming a downstream meniscus, which influences the coating characteristics.

Thus, an important consideration in the coating process is the exit meniscus, which represents the
profile of the free surface as the fluid exits from the die due to the viscous drag from the moving
wire or fiber. The governing equations are solved to obtain the temperature and flow distributions,
from which the shear at the free surface is determined. The additional forces due to gravity, surface
tension and external shear due to air are included to determine the overall force balance. The force
imbalance is used to generate an iteration scheme, starting with a guessed profile, till the force
balance is satisfied and a converged meniscus is obtained [13]. Figure 3 shows the numerical results
and compares these with experimental data on the exit meniscus profile. A good agreement is
observed, indicating the validity and accuracy of this approach. Overall, it is necessary to make all
possible efforts to validate the mathematical/numerical models, even if it means spending
considerable time and effort in developing an experimental arrangement to obtain the data needed
for comparisons.



