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Preface

Opening a new line of attack on an old pedagogic problem, the statistical
analysis developed in this book has not before figured in a truly elementary
approach to primarily chemical thermodynamics. This analysis wholly
supplants the Carnot analysis that students find so forbiddingly difficult.
And, though superficially more demanding, the statistical analysis has proved
readily intelligible to the same kind of students formerly frustrated by Carnot.

The disappearance of Carnot opens the way to a second important simpli-
fication. For one can then entirely bypass the great morass of work calcula-
tions that has, for generations, claimed its heavy toll of innocent wayfarers
on the roads of classical thermodynamics. Apart from the requirements of
the Carnot analysis, these stultifyingly traditional calculations are actually of
no use whatever to the vast majority of working chemists. And, with the
disappearance of all such calculations, the argument can be brought to a
sharper focus on just those aspects of thermodynamics that are of greatest
relevance to chemistry: most notably, the power to calculate, from purely
thermal data, the position of equilibrium in a chemical reaction perhaps not
even yet achieved.

Here is the scenario. Chapter 1 opens with a simple but substantive account
of Boltzmann statistics, which comes naturally to highlight a parameter W.
For readily assignable reasons, we choose to discuss not W itself but, rather,
the “entropy” defined by writing S = kIn W. This development wholly
dispels the oppressive sense of mystery commonly associated with the con-
cept of entropy. Admittedly, in most cases of actual chemical interest, we
find ourselves unable to evaluate W and, thence, S. But we also discover
that the definition of S leads at once to a derivative relation applicable to all
purely thermal changes. Rendered intuitively meaningful by its definition
in terms of W, the concept of entropy is thus shown to be operationally
quantifiable by way of purely thermal measurements. And, by a slight ex-
tension of the same statistical analysis, we soon arrive at a master-relation
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viii Preface

that promises general criteria for both the direction of spontaneous change
and the position of equilibrium ultimately attained in any such change.

Chapter 1 introduces thermodynamics in an informal way. Chapters 2
and 3 then supply a more formal account of the principles of thermodynamics,
after which Chapter 4 returns to the full exploitation of the master-relation
that is then possible. Focused exclusively on macroscopic parameters, these
last three chapters offer a clear view of both the powers and the limitations of
a strictly classical thermodynamics. However, those who wish more fully
to exploit the statistical viewpoint of Chapter 1 will find it easy to do so:
the present text joins smoothly to Part II of my Elements of Statistical
Thermodynamics (Addison-Wesley, 1968), where a straightforward develop-
ment of the partition function opens the way to a determination of thermo-
dynamic parameters from spectroscopic data.

In drafting this text I have had in mind the needs of college freshmen whose
efforts would be actively supported by a series of exegetical lectures. But
I have intended the book also for essentially independent study by more
advanced students. Whatever the background of the reader, to follow the
argument he will need no more than some familiarity with the leading quanti-
tative concepts of the traditional introductory college-chemistry course,
together with a sound background in high-school physics and mathematics.
Prior acquaintance with the rudiments of the calculus will be very helpful,
but Appendix I provides a full development of all of the exceedingly ele-
mentary operations of the calculus used in this book. This purely mathe-
matical machinery has everywhere been held to an absolute minimum, in
order that it should not (as so often it does) obstruct the student’s view of
the essential physical ideas that lie at the heart of thermodynamics. Despite
the modest preparation expected of the reader, this text will prepare him to
grapple with the comprehensive set of amply challenging problems presented
in Appendix II. Here too the challenge arises from the physical ideas, not
the mathematical machinery: indeed, most of the problems demand nothing
beyond algebra, and the others require no use of calculus beyond the few
operations already displayed in the body of the text.

“Work” here becomes so peripheral a topic that, even after thirty years
of thinking in terms of the old sign convention, the author has encountered
no difficulty whatever in adopting the opposite sign convention now officially
recommended. Amongst the myriad equations in the body of the text, some
have been denoted by letters or numbers. The letter assignments serve only
to facilitate identification of relations operative in the immediately succeeding
text, or in a problem. The number assignments, on the other hand, systemati-
cally distinguish the most important relations. The reader will be well
advised to organize his study by compiling his own list of the 65 numbered
equations—attaching to each an indication of any special conditions that
restrict its applicability.
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Among the many books that have contributed to the shaping of this
exposition, undoubtedly the two most influential have been the late Ronald
Gurney’s Introduction to Statistical Mechanics (McGraw-Hill, 1949) and
Frederick Reif’s Statistical Physics (McGraw-Hill, 1965). The treatment of
heat-engine efficiencies follows a line suggested in a manuscript by Herbert
Callen. A few problems, drawn in substance from other texts, carry the
names of the authors to whom I am indebted. Three publishers have kindly
permitted me to reproduce certain copyrighted materials, as follows: Tables 2
and 3 have been taken from E. F. Caldin’s Introduction to Chemical Thermo-
dynamics (Oxford University Press, 1958); Fig. 35 has been redrawn from
Hildebrand and Scott’s Solubility of Non-Electrolytes (Reinhold, 1950);
and Fig. 7 comes from J. D. Fast’s Entropy (Philips Technical Library,
Eindhoven, Holland, 1962).

I am much obliged to Jerry A. Bell, James N. Butler, J. Arthur Campbell,
and Melvyn P. Melrose for their willingness to comment on part or all of
a draft version of this text. For a great many constructive suggestions, I am
deeply grateful to George A. Fisk and to Francis T. Bonner, the editor of
this series. For assistance in reading proofs, I owe many thanks to my wife,
and to Gary Horowitz. Responsibility for any errors or obscurities that may
remain is the indivisible prerogative of the author.

Cambridge, Massachusetts L. K. N.
December 1971



Contents

1 The Statistical Viewpoint

Microstates and Configurations
The Boltzmann Distribution Law
Identity of the significant configurations
Physical Meaning of the Distribution Law
Variation of W with E .
The Approach to Thermal Equ111br1um
Physical meaning of 8
The Concept of Entropy .
The Approach to Chemical Equlllbrlum .
Determination of entropies
Directional pointers .
Reservations

2 First Principle of Thermodynamics, and the Term ¢

Heat and Work
Pressure-volume work ;
Path-dependence of work and heat
Energy .
Characteristics of a functlon of state 5
Enthalpy
Standard states 5
Thermochemistry and Hess’s Law i
Bond energies .
Heat Capacity
Ideal gases
Kirchhoff’s Equations
Adiabatic flames and explosxons

xi

14
19
23
26
30
32
33
38
42
42
43

47
51
53
55
56
58
63
63
66
69
70
73
75



xii Contents

3 Second Principle of Thermodynamics, and the Term AS

Reversibility
Roots of the Second Prmcnp]e
Evaluation of Entropy Changes
Phase changes .
Change of temperature
Standard entropies and the Nernst heat theorem .
Efficiency of Heat Engines

4 Consequences of the Thermodynamic Principles

The Free Energies
Gibbs free energy .
Evaluation of free-energy changes
The Clapeyron Equation
The absolute thermodynamic temperature scale
The Clausius-Clapeyron equation
Ideal Solutions and Colligative Properties
Boiling-point elevation
Freezing-point depression .
Solubility: a colligative property ?
Osmotic pressure
Equilibrium State and Equ111br1um Constant .
Temperature-dependence of the equilibrium constant
Free Energy and Available Work
The galvanic cell

Appendix I Some Operations of the Calculus
Appendix IT  Problems
Appendix III Thermochemical Data at 298.15°K

Index

79
84
86
89
91
92
98

102
103
107
113
115
117
118
122
125
127
130
133
139
145
146

155
171

201
205



The Statistical 1
Viewpoint

In every change, however drastic it may appear, we surmise a “something”
that remains constant. From the very beginning of the modern era, some
men (e.g., Descartes) have conceived that “something” as more or less close
kin to what we would call energy. And energy—or, better, mass-energy—is
surely conceived by us as a “something constant” enduring through all
change. The energy concept thus gives quantitative expression to our firm
conviction that “plus ¢a change, plus c’est la méme chose.” We have another
conviction scarcely less intense: the conviction that the future will not repeat
the past, that time unrolls unidirectionally, that the world is getting on.
This second conviction finds quantitative expression in the concept of
entropy (from Gr. en, in + trope, turning). By always increasing in the
direction of spontaneous change, entropy indicates the “turn,” or direction,
taken by all such change. And from the union of the entropy and energy
concepts, little more than a century ago, there was born a notably abstract
science with innumerable concrete applications; a science of thermodynamics
that combines magnificent generality with unfailing reliability to a degree
unrivaled by any other science known to man.

Thermodynamics treats of systems—parts of the world that definite
boundaries separate conceptually (and often, with a good degree of approx-
imation, physically) from the rest of the world. The condition or state of
such a system is regarded as thermodynamically defined as soon as values
have been established for a small set of measurable parameters. These
parameters are so chosen that any particular state of the system will be fully
and accurately reproduced whenever the defining parameters take on the set
of values descriptive of that state. Temperature, pressure, volume, and
expressions of concentration (e.g., mole fractions) are the parameters most
used by chemists, and temperature in particular is distinctive of thermo-
dynamic analyses generally. But not every state of every system can be
characterized by a single well-defined temperature (and pressure), and from
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2 The Statistical Viewpoint

this circumstance arise two major restrictions on the applicability of classical
thermodynamics. First, given the (Maxwellian) distribution of molecular
velocities, a single molecule, or even a small group of molecules, does not
have a definite temperature. Only to macroscopic systems will a temperature
be assignable, and only to such systems will thermodynamics be applicable.
Second, even a macroscopic system will manifest local inhomogeneities of
temperature (and pressure) while it is undergoing rapid change. An entire
macroscopic system will be characterizable by a unique temperature (and
pressure) only when that system stands in an unchanging state of equilibrium
—or in a quasi-static state only infinitesimally different from a true equilib-
rium state. And it is with such states alone that classical thermodynamics
concerns itself.

Characteristically a science of macroscopic equilibrium systems, thermo-
dynamics will here be developed from an analysis of the submicroscopic
components (atoms, molecules, etc.) that constitute all known macroscopic
systems. In a bounded system, the crucial characteristic of these components
is that their energies are “‘quantized.” That is, where the energies accessible
to a macroscopic system form a virtual continuum of possibilities, the
energies open to any of its submicroscopic components are limited to a
discontinuous set of alternatives associated with integral values of some
“quantum number.”

Perhaps the most familiar example of what is meant by quantization is
presented by the Bohr interpretation of the hydrogen emission spectrum.
This spectrum consists of a series of sharp “lines,” characterized by particular
wavelengths. Each of these lines is supposed to arise in the emission by the
hydrogen atom of an energy packet of some particular size. Such an energy
packet is emitted when the atom passes from a state of higher energy to one
of lower energy. From a study of the sizes of the emitted energy packets,
one infers that the atom can exist only in a certain well-defined set of
quantum states. The energy (€y) associated with any of these permissible
states is given by the equation:

_2n’me* 1

€y = h2 F .

Here h symbolizes Planck’s universal constant, m and e respectively represent
the mass and charge of the “orbital” electron in the hydrogen atom, and n
is a quantum number that can assume any integral value within the range
1 to oo. The possible states of the hydrogen atom, each characterized by
some integral value of the quantum number n, are thus linked with the
discontinuous set of permissible energies given by the last equation—which
expresses the energy-quantization condition for the hydrogen atom. Rather



The Statistical Viewpoint 3

more complicated relations, involving additional quantum numbers, express
analogous energy-quantization conditions applicable to other species of
gaseous atoms.

Like atoms, molecules also can exist only in particular sets of states
characterized by different electronic configurations, with which are asso-
ciated correspondingly restricted series of permissible energy states. But,
unlike atoms, molecules exhibit fully quantized modes of energy storage
other than that represented by electronic excitation. For example, when in
any given electronic state, a molecule may perform various vibrational
motions. A study of molecular spectra indicates that, when the vibration
can be approximated as a harmonic oscillation, the only permissible values
of the vibrational energy (¢,) are given by the equation

€, = (v + Hhv.

Here v is a frequency characteristic of the particular vibration involved, and
v is a quantum number that can assume any integral value within the range
0 to oo. The possible vibrational states, each specified by some distinctive
integral value of the vibrational quantum number v, are thus linked by the
last equation with an evenly spaced set of quantized vibrational energies.
The rotational motions of molecules, and the translational motions of both
atoms and molecules, are similarly associated with sets of discrete quantum
states—to which correspond similarly discontinuous series of permissible
rotational and translational energies.

In a full-dress treatment of statistical thermodynamics, a careful analysis
of all the different modes of energy storage is indispensable. But, for the
modest goal at which we aim, much less will suffice. Concerning the
“harmonic oscillator” we need know nothing beyond the even energy spacing
of its quantum states. And more generally, all we need take as established
is that, in atoms and molecules, every mode of energy storage is quantized.}
We propose then to view a macroscopic thermodynamic system as an assem-
bly of myriad submicroscopic entities in myriad ever-changing quantum
states. This may at first seem a completely hopeless pretension. For how
can we possibly hope to give any account of an assembly that, if it contains
just one mole of material, contains no less than 6 x 10?3 distinct units?
Even a three-body problem defies solution in a completely analytical form;
yet we facea 6 x 1023-body problem. Actually, just because of the enormous
numbers involved, this problem proves unexpectedly tractable when we give
it a statistical formulation. From a consideration of assemblies of quantized

t Though it enormously simplifies the subsequent analysis, this assumption of
quantization is not absolutely essential—and is altogether bypassed in a more
laborious but purely classical development.



4 The Statistical Viewpoint

units, in the next section, we develop three propositions that will prove useful
in our statistical analysis. Observe that our concern here is purely math-
ematical, and that we could instead obtain the desired propositions by
considering, say, in how many different ways a number of balls can be
distributed over a set of boxes.

MICROSTATES AND CONFIGURATIONS

For simplicity, let us consider first an assembly of identical units, localized
in space, with permissible quantum states that are associated with an evenly
spaced set of energies. An assembly meeting these specifications might
be an array of identical one-dimensional harmonic oscillators occupying
various fixed positions in a schematic crystal lattice. We stipulate localization
of the oscillators so that, their identity notwithstanding, each will be rendered
distinguishable in principle by its unique geometric placement. We stipulate
identity of the oscillators so that, in the energy-quantization law ¢, =
(v + Y)hv, the characteristic frequency v will be the same for any among all
the oscillators concerned. The quantum states of any such oscillator can then
be depicted as shown in Fig. 1. Since all that concerns us is the spacing of
these levels, for convenience we have chosen to make our reference zero of
energy coincident with the energy of the lowest possible quantum state. That
is, for this so-called “ground” state with » = 0, we now write ¢, = 0.
The energy quantum #Av represents the constant margin by which each of
the higher (“excited”) states surpasses in energy the state immediately below it.
To bring any oscillator from its ground state to an excited state characterized
by some integral value of v, we need only add v quanta with energy Av.

v=>5
hy
v=4
> hy
:"f v=3
) hy
=0
hy
v=1
hy
0 v=0 Figure 1

Let us begin with a very simple assembly of three localized oscillators
which share three quanta of energy. In how many ways can these three
identical quanta be distributed among the three distinguishable oscillators?
The ten possible distributions are indicated in Fig. 2—in which the dots
are so placed that the letter markings along the abscissa indicate the particular
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oscillator concerned, and the number of energy quanta assigned to it can
be read from the ordinate. Each of the ten detailed distributions we call a
microstate, and it is easy to see that the ten microstates fall in the three
groups indicated by Roman numbers. That is, all ten are simply variants of
the three basic configurations shown in Fig. 3. In configuration I all three
energy quanta are assigned to one oscillator, no quanta to the remaining two
oscillators, and three microstates develop from this configuration according
to whether the three-quantum packet is assigned to oscillator @ or to b or to c.
In configuration II two quanta are assigned to some one oscillator, one
quantum to a second oscillator, no quanta to the third oscillator; and, as
indicated in Fig. 2, there are six distinguishable ways in which such assign-
ments can be made. In configuration III one quantum is assigned to each of
the three oscillators, and it is evident that there can be but one microstate
associated with this configuration.

I 11 I1I
3 °
2 °
1 . ° ° .
0 -~ -
3—§=3é?i1=3 31=3-2-1=6 §—§=§’:§:i=1
Figure 3

How shall we obtain a systematic count of all the microstates associated
with any given configuration? To arrive at the requisite formula, return again
to configuration II. Observe that we can assign the first (two-quantum)
parcel of energy to any one of three oscillators; having done so, we can
assign the second (one-quantum) parcel to either of the two remaining
oscillators; there then remains but one oscillator to which we assign the third
(nil) parcel. The total number of ways in which the assignments can be
made is thus 3-2-1 = 3! (i.e,, “three factorial”’)—which, indeed, duly
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represents the 6 microstates associated with configuration II. Turning next
to configuration I, we have again three choices in assigning the first (three-
quantum) parcel, two choices when we assign the second (nil) parcel, and
one choice when we assign the third (nil) parcel. But observe that, the last
two parcels being the same, the final distribution is independent of the order
in which we assign them. Whether, say, we assign the second parcel to
oscillator b and the third parcel to oscillator ¢, or vice versa, the two verbally
distinguishable orders result in precisely the same final microstate. That is,
2 -1 = 2! verbally distinguishable assignments collapse into 1 microstate
because the two oscillators wind up in the same (v = 0) quantum level.
Hence the total number of microstates associated with configuration I is
not 3! but rather 3!/2! = 3. The same kind of shrinkage of possibilities is
seen in even more extreme form in configuration III. Here there is triple
occupancy of the same (v = 1) quantum level, and the 3! verbally distin-
guishable assignments collapse into one and the same final microstate. The
number of microstates associated with configuration III is then simply
3131 = 1.

By extending this style of analysis, we can easily extract a general formula
abundantly useful in more difficult cases. Consider an assembly of some
substantial number (N) of localized harmonic oscillators. In how many
different ways can we distribute among these oscillators the particular set of
energy parcels (including nil parcels) characteristic of the configuration in
question? We have N choices of the oscillator to which we assign the first
parcel, (N — 1) choices in assigning the second, and so on—representing a
total of (N)(N — 1)(N — 2)---(1) = N! distinguishable possibilities if no
two of the energy parcels are the same. If, on the other hand, some number
(n,) of the parcels are the same, we can obtain only N!/n,! distinct micro-
states; if 5, of the parcels are of one kind and 5, of some other one kind, we
can obtain only N !/(n,!)(,!) microstates, and so on. The general conclusion
is now quite clear. Symbolizing by W the total number of microstates
associated with any configuration involving N distinguishable units, we can
write:

N!
1) Y) -+

where 7, represents the number of units assigned the same number of energy
quanta (and, hence, occupying the same quantum level), n, represents the
number of units occupying some other one quantum level, . . .

1 We obtain an identical equation by considering in how many distinct ways a set
of balls can be distributed over an equal number (N) of distinguishable boxes. If
the balls are all recognizably different from one another, there are N! distinct
distributions; but if #, of the balls are of one kind, and 7, of another, the number
of distributions will be reduced to N!/(n,)(n,").
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The last equation can be represented more compactly as

|
w o ! ,
I 7!

where the symbol [T instructs us to make a continuing product (even as the
symbol Y’ instructs us to make a continuing sum) extended over all terms of
the form following the symbol, and each of the #, terms represents the
number of units resident in each of the populated quantum levels. Observe
that, though we arrived at equation (1) by considering assemblies of har-
monic oscillators, with uniform energy spacing between their quantum
levels, the actual argument is wholly independent of the supposition of
uniformity. Equation (I) is a general relation, equally applicable to any
species of distinguishable unit with any energy spacing between its quantum
levels. As indicated below, straightforward multiplication of the expanded
factorials suffices to establish the number of microstates associated with any
configuration for which N is small (<10). For medium-sized values of N
(10 to 1000), one can use tabulated values of N! in evaluating W. For very
large values of N, we can follow neither of these courses. But, precisely in
the limit of large N, an excellent value for N!—or, rather, the natural
logarithm of N! which we symbolize as In N !—is supplied by the simplest
form of Stirling’s approximation,f

(D

InN!=NInN — N. )

With equation (1) in hand we can make short work of two additional
simple examples. Consider that 5 energy quanta are shared among 5
oscillators. The possible configurations, and the number of microstates
associated with each of them, are shown in Fig. 4. Note that even a slight
increase in the number of units (and quanta) has produced a sharp increase
in the total number of microstates = > W; = 126.

As a last example, consider an assembly in which the number of energy
quanta is not equal to the number of units present: suppose that 5 energy
quanta are shared among 10 oscillators. The possible configurations of

+ Foregoing the elementary application of the calculus that yields a derivation of
equation (2), we may just note a crude algebraic argument that offers some
rationalization of this form of Stirling’s approximation. Consider that the function
N ! symbolizes the continuing product (N)(N — 1)(N — 2)---(2)(1). This means
a product of N terms with values ranging from a maximum of N to a minimum of 1,
and thus averaging about N/2. Consequently

N! ~ (N/2)¥
InN! 2 NIn(N/2) = NInN — NIn2= NInN — 0.7 x N.

This proves to be a slight overestimate, which can be much improved merely by
replacing the 0.7 by 1.0—and that brings us to equation (2) above.
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this assembly are easily obtained by adding 5 units to the ground level in
each of the configurations shown in Fig. 4—with the results shown in Fig. 5.
The calculation of the number of microstates associated with each configura-

tion is given in extenso,

to call attention to a simple method we will use

repeatedly in handling factorial ratios:

w10
Wu=%=
Wm‘—'lsg!!=
le=%

Wy = o =
Wvu=51!—(;!!=

10-9 - (8Y)

_10-9-8-(7)

10- (Y

o 10,

=10-9 = 90,

8!

90,

=10-9-4 = 360,

1-(7Y)

360,
10-9-8-7-(6) _
3-2-1-(6)

0-9 6-(5)
4. 1-(5Y)

= 10-12-7 = 840,

1
5

=6-7-6 =252

-8-7-
32
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Note that, by doubling the number of units, we have produced close to a
ninefold increase in the total number of microstates = > W; = 2002.

As the number of units increases further, the total number of microstates
skyrockets to unimaginable magnitudes. Thus one can calculate that an
assembly of 1000 localized harmonic oscillators sharing 1000 energy quanta
possesses more than 10%°° different microstates. This is an unimaginable
magnitude: our entire galaxy contains fewer than 107° atoms. Even the
estimated . total number of atoms in the entire universe is as nothing in
comparison with 10°°°, And though we can offer a compact expression for
the total number of microstates that can be assumed by 6 x 1022 oscillators
sharing an equal number of energy quanta, that number (=~10'°*’) is
essentially meaningless, inconceivably immense.

This explosive expansion of the total number of microstates with in-
creasing N is a direct consequence of the mathematics of permutations,
from which arises also a second consequence of no less importance. We can
detect the emergence of this further effect in results already obtained. Let us
compare our findings for the 5 unit-5 quantum assembly with those for the
10 unit-5 quantum assembly. In Fig. 6 we represent by shaded and open bars
respectively the number of microstates associated with each configuration of
these two assemblies. If we make the width of each bar equal to one unit of
horizontal distance, the numbers of units of area covered by the solid and
open bars respectively will indicate the fotal/ numbers of microstates that can
be assumed by the 5-5 and 10-5 assemblies. The ratio of the areas does
indeed reflect the approximately 16:1 value earlier established as the ratio
of those numbers. But we have yet to note the most significant feature of
the graph: the conspicuous peak representing the number of microstates
associated with one configuration (VI) of the 10-5 assembly. Where for the



