“NONLINEAR

~ PHYSICAL
SCIENCE

l Hyperbolic Chaos
A Physicist's View
X i B

— BRIV

RNy



Sergey P. Kuznetsov

Hyperbolic Chaos

A Physicist’s View

L AT
— ML SRS

Shuanggu Hundun

2K,

‘ }
With 214 figures lﬁ M)\J l

e

‘ LN | f‘vql"w
A, "

o
v ¥

B h ik Asmp-Ex

HIGHER EDUCATION PRESS  BENING



Author

Sergey P. Kuznetsov

Kotel’nikov’s Institute of Radio-Engineering and
Electronics of RAS, Saratov Branch

410019, Zelenaya 38, Saratov, Russian Federation
Email: spkuz@rambler.ra

© 2011 Higher Education Press, 4 Dewai Dajie, 100120, Beijing, P. R. China

FE-BfeR4E (CIP) il

IR . —ANFRE S N A = Hyperbolic Chaos : A Physicist’s View :
B (RBH ) Begiaie e  — U SR E R, 2011.9
(EEMEERE ) PR, (R ) PR, () ks
HAERTER)

ISBN 978-7-04-031964-4

[.OX- 0.0 . ORMEEL -5 - KX

IV.® 0415.5

rhERRAE 518 CIp Bt 7 (2011) 5 156888 5

RRGRE  ENRTE HIERE FER HE&t Bk TR HAbER
FEENH RED

HRETT SEEE Bkt &EIEIE  400-810-0598

# 0 H AEETTERR SN 4 S [ Ht  http://www.hep.edu.cn
HPEARES 100120 http://www.hep.com.cn

B Rl BEMAEFEDRIEIRAE] P  http://www.landraco.com
F A& 787x1092 1/16 http://www.landraco.com.cn
B3k 21 R & 2011459 AB 1K

F ¥ 400000 Bl & 20114 9 A% 1 REDKI
Wsék  010-58581118 EF #r 69.007T

AP, B, RESHERAE, FUEDHER TR ER

AR REER

¥ ¥ 5 31964-00

Sales only inside the mainland of China

(IXFR R AR X 84}

AP #FIMRE Springer 3 7ET E AR HIK LASNXISBYEE, ISBN 4 978—3—642—23665—5



Preface

One of intensively developing research directions is exploration of complex dynam-
ics and chaos in nonlinear systems. We regard an object as a dynamical system, if
its state at any given time may be obtained from the initial state according to a cer-
tain rule defined for the given system. It is remarkable that such definition, although
representing ideal of deterministic vision, does not exclude a possibility of chaotic
behavior of the object, with dependence of the state on time looking like a random
process. Chaos occurs in systems of different nature, e.g. relating to mechanics, hy-
drodynamics, electronics, laser physics and nonlinear optics, chemical kinetics, and
biomedical disciplines. The main attribute of the dynamical chaos is sensitivity to
small perturbations of initial conditions, which makes it impossible to predict the
future states actually for times longer than some characteristic scale, which usu-
ally depends logarithmically on the inaccuracy of the initial conditions (“horizon of
predictability™).

For dissipative dynamical systems, chaos is associated with presence in the state
space of a curious object called the strange attractor. At present, the collection of
models with strange attractors is very rich, including artificial mathematical exam-
ples, models of physical, chemical, and biological systems.

A classic example of chaotic attractor is Lorenz attractor. It occurs in a set of
three first-order differential equations modeling fluid convection or dynamics of a
single-mode laser. The Lorenz model was a subject of extensive and careful stud-
ies in recent decades. Accurate mathematical foundation of chaotic nature of dy-
namics of the Lorenz model was found to be a subtle and delicate problem. It was
announced as the 14-th Smale problem (from the list of difficult mathematical prob-
lems suggested by Steven Smale in 1998, as challenging mathematicians of the 21st
century, similar to the list of Hilbert problems advanced for the 20th century). The
solution was given by W. Tucker in 2002 by combination of technique of computer-
assisted proof and careful analytic considerations.

Maybe, there was a lost opportunity for the nonlinear science to find out an al-
ternative, a less painful way to discover physically meamngful and mathematically
validated examples of chaotic behavior.
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About 40 years ago, in mathematical studies a special type of chaotic attractors
was introduced, namely, the uniformly hyperbolic attractors. They relate to systems
belonging to the so-called axiom A class and are considered in the hyperbolic the-
ory associated with the names of Anosov, Alekseev, Smale, Williams, Sinai, Plykin,
Ruelle, Pesin, Newhouse and others. Chaotic nature of dynamics on the uniformly
hyperbolic attractors is proved rigorously. They possess a property of structural sta-
bility, i.e., the phase space arrangement, character of dynamics, and its statistical
characteristics are insensitive to variation of parameters and functions in the gov-
erning equations.

Originally, it was expected that the uniformly hyperbolic attractors will be rel-
evant to many physical situations of occurrence of dynamical chaos. However, as
time passed and many examples of chaotic systems of different nature had been
suggested and studied, it became clear that these examples do not fit the narrow
frames of the early hyperbolic theory. Therefore, people started to think of the uni-
formly hyperbolic attractors rather as of refined abstract image of chaos that has
no relation to real systems. Efforts of mathematicians were redirected at developing
generalizations applicable to broader classes of systems. For example, notions of
singular-hyperbolic (or quasi-hyperbolic) attractors, non-uniformly hyperbolic at-
tractors, partially hyperbolic attractors, and quasi-attractors were introduced, and
certain progress in their exploration was achieved.

Abandoned for a long time and not clarified until recently is a question on a
possibility of occurrence of the dynamical behavior associated with uniformly hy-
perbolic attractors in real world systems or, at least, in specially designed systems
in physics and technology.

In textbooks on and reviews of nonlinear dynamics, the uniformly hyperbolic
attractors are represented usually by artificial discrete time models based on geo-
metric constructions, often explained qualitatively, in words, or by graphic images.
Of course, for a physicist this is only a starting point for a research.

First of all, in addition to the geometric constructions it is desirable to have exam-
ples in a form of explicitly written equations, which allow application of computer
methods for analyzing the dynamics and calculation of quantitative characteristics
interesting to possible applications.

For some physical systems description in discrete time is very natural, and it
would be worth examining possibilities of occurrence of the hyperbolic attractors in
maps relating to such systems.

Next, it is important to turn to continuous time systems, which are of the first
place importance, e.g., in physics and technology.

It is desirable to have a clear vision of how to implement the dynamics on uni-
formly hyperbolic attractors using combinations of structural elements known in
the context of the theory of oscillations and in applications (oscillators, coupled
systems, and feedback loops).

Finally, the proposed models should be implemented as real operating devices,
for example, in electronics, mechanics, nonlinear optics, and technical applications
of such devices should be indicated with explanation of advantages over alternative
possible solutions.
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In the theory of oscillations, since classic works of Andronov and his school,
rough or structurally stable systems are regarded as those subjected to priority
research, and as the most important for practice. It seems natural that the same
should relate to systems with structurally stable uniformly hyperbolic attractors.
The lack of physical examples in this regard looks as an evident dissonance. From
a methodological point of view, the situation is similar to that in the early 20th
century concerning the limit cycles, before their role as mathematical images for
self-oscillations was established. In a similar way, the uniformly hyperbolic chaotic
attractors should find their place as images for phenomena in real systems. It will
help to link the abstract hyperbolic theory developed by mathematicians with de-
scription of real systems and attribute this theory to physical content.

This book is devoted to review the modern state of the outlined research program.
The material is presented in four parts.

The introductory Part I consists of two chapters. Chapter 1 is devoted to the nec-
essary basic concepts, including the notion of dynamical system, attractor, Poincaré
map, and hyperbolicity. We introduce and discuss classic examples of uniformly
hyperbolic attractors: Smale-Williams solenoid, DA-attractor of Smale, and attrac-
tors of Plykin type. An overview is given to the content of the hyperbolic theory
(the cone criterion, structural stability, Markov partitions and symbolic dynamics,
measures of Sinai-Ruelle-Bowen, etc.). Chapter 2 is a review of the literature indi-
cating various possible situations of occurrence of uniformly hyperbolic attractors
in dynamical systems.

Part II is the basic one. Here, we introduce a number of examples of systems,
which allow physical implementation, and possess uniformly hyperbolic attrac-
tors with one-dimensional unstable manifolds (one positive Lyapunov exponent).
In Chap. 3 we consider models, which admit a natural stroboscopic discrete time
description. These are systems operating under periodic pulse kicks and systems
whose dynamics is composed of a periodic sequence of stages, each of which is gov-
erned by a particular form of the differential equations. Chapter 4 discusses models
designed on a base of two self-oscillators which are excited alternately because of
forced external parameter modulation and transmit the excitation to each other in
such way that its phase transforms in accordance with expanding circle map. Chap-
ter 5 is devoted to autonomous systems operating according to the same principle. In
Chap. 6 we consider schemes of parametric generators of chaos with hyperbolic at-
tractors. Chapter 7 is devoted to methods of computer verification of the hyperbolic
nature of attractors illustrated with the examples suggested in the previous chapters.
Particularly, we consider technique of visualization of mutual location of stable and
unstable manifolds, statistics of angles of intersections between them, visualization
of the natural invariant measure distributions on the attractors, and verification of
the cone criterion.

Part III is devoted to model systems, for which mathematical justification of the
hyperbolic nature of the attractors is more problematic. Hypothetically, however, the
hyperbolicity apparently takes place. This assertion is based on the fact that from a
physical point of view, those models are built following the same principles as the
systems considered in Chaps. 4 and 5, for which the hyperbolicity is justified at
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the level of computations. In Chap. 8 we consider non-autonomous systems of four
alternately excited oscillators. Among them, there is a model, in which the trans-
formation of phases during a period of parameter modulation follows the Anosov
map on the torus, and a model associated with a map on the torus with hyperchaotic
dynamics (more than one positive Lyapunov exponent). Also a system is considered
constructed of two coupled elements, with each possessing a hyperbolic attractor.
For this case, some details are studied for the transition corresponding to complete
synchronization of chaos. In Chap. 9, an autonomous system is considered func-
tioning due to dynamics nearby a heteroclinic cycle in the amplitude equations. On
this basis, we implement an attractor of Smale-Williams type in the Poincaré map,
an attractor with dynamics of cyclic (phase) variables governed by the Anosov map,
and a hyperchaotic attractor. Chapter 10 is devoted to systems with delayed feed-
back, in which a chaotic map for the phases of successively generated oscillation
trains is arranged due to the transfer of excitation from the previous stages of activ-
ity of a single oscillatory element (self-oscillator) to the next stages. In Chap. 11 we
consider a high-dimensional system built on two ensembles of self-oscillators with
global coupling within each of them. Due to the turning the coupling on and off
alternately in two ensembles, they undergo periodic Kuramoto transitions from syn-
chronization to desynchronization and back; the interaction between the ensembles
is organized in such way that the phase of the oscillatory excitation for the mean
field transferred to each other, follows the chaotic map.

Part IV is devoted to examples of hyperbolic (or hypothetically hyperbolic) at-
tractors in electronic experiments available to date. In Chap. 12 we consider ex-
periments with a non-autonomous system of two alternately excited self-oscillators
manifesting dynamics on the attractor of Smale-Williams type. In Chap. 13 two vari-
ants of non-autonomous time-delay systems with periodic parameter modulation are
discussed. One possesses presumably an attractor of Smale-Williams type, embed-
ded in an infinite-dimensional state space of the respective stroboscopic Poincaré
map, and the other corresponds to a partially hyperbolic attractor.

The Appendix address some matters, which are essential to the whole presenta-
tion and illustrations, but dropping out of the basic structure of the book. We con-
sider algorithm for computing Lyapunov exponents based on the Gram-Schmidt
orthogonalization, and derivation of the Hénon and Ikeda maps from physical con-
siderations for systems with impulse kicks. Further, the construction of the Smale
horseshoe is presented, which gives a nontrivial example of a non-attractive compli-
cated invariant set. The Kaplan-Yorke formula is derived and explained connecting
approximately the Lyapunov exponents and dimensions of chaotic attractors. For-
mal definition of the model of Hunt is reproduced, which implements suspension
of attractor of Plykin type. A simple model of hyperbolic dynamics on a compact
surface of negative curvature is considered. The final Appendix is devoted to the
shadowing property of hyperbolic chaotic attractors, which is illustrated in compu-
tations for a model from Chap. 4 with added noise.

The book may be useful to physicists and engineers interested in the practical ap-
plication of the theory of deterministic chaos, particularly in obtaining robust chaos
insensitive to parameters and characteristics of components, fluctuations, interfer-
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mechanics, hydrodynamics,

ences, etc. This may relate to various disciplines
electronics, laser physics, and nonlinear optics.

Contents of the book can probably help to think about possibilities of occurrence
of structurally stable chaos in systems of different physical nature. Intriguing area
for contemplations may be the significance of such chaos in neurodynamics.

On the other hand, the book can be useful for mathematicians interested in con-
crete applications of the hyperbolic theory. For them, it may be of interest to see
how the mathematical theories are refracted from the perspective of the applied dis-
ciplines.

The author tried to present the material in a style available to graduate and post
graduate students of non-mathematical specialties and to make it, as far as possible,
self-consistent to allow a study without recourse to other sources. I tried to avoid for-
mal definitions and formulations with abusing mathematical symbolism, replacing
them with rather intuitive qualitative arguments. Perhaps, a part of mathematically
oriented readers will find it insufficient; they are referred to rich literature on math-
ematical theory of dynamical systems. Also, I must warn that the consideration of
general content of nonlinear dynamics is restricted here by the minimum needed for
understanding the substantive material of the book. So, it can not be regarded as a
substitute for a systematic study of integral general courses of nonlinear dynamics,
to which the interested reader is referred for this purpose.

I am grateful, for useful discussions, assistance, and constructive criticism, to
V.S. Anishchenko, V.S. Afraimovich, B.P. Bezruchko, V.N. Belykh, A.Yu. Jalnine,
A.Yu. Zhirov, O.B. Isaeva, A.P. Kuznetsov, P.V. Kuptsov, J. Kurths, A.Yu. Losku-
tov, R. MacKay, L.A. Mel’nikov, A. Pikovsky, V.I. Ponomarenko, A.G. Rozhneyv,
N.M. Ryskin, I.R. Sataev, E.P. Seleznev, W. Tucker, D.V. Treshchev, D.I. Trubet-
skov, L.V. Turukina.

Also, I thank all colleagues and administrative staff of Saratov Branch of Ko-
tel’nikov’s Institute of Russian Academy of Sciences for many years of friendly
collaboration, support, and creative atmosphere stimulating the scientific work.

The researches laying the foundation of this book were supported, in part, by
RFBR grants 06-02-16619, 09-02-00426, 09-02-00707, and DFG-RFBR grants
04-02-04011, 08-02-91963. Additionally, the author acknowledges a support from
program of Development of Scientific Potential of Higher Education of Ministry
of Education of Ministry of Education and Science of Russian Federation (grant
2.1.1/1738).

Sergey P. Kuznetsov
Saratov, February 2011



Contents

Part I Basic Notions and Review

1

Dynamical Systems and Hyperbolicity . ........................... 3
1.1 Dynamical systems: basicnotions . ..............coevueeune.... 3
1.1.1 Systems with continuous and discrete time, and their
mutualrelation .......... ... i i 3
1.1.2 Dynamics in terms of phase fluid: Conservative and
dissipative systems and attractors ....................... 6
1.1.3 Rough systems and structural stability ................... 8
1.1.4 Lyapunov exponents and their computation .............. 10
1.2 Model examples of chaotic attractors .......................... 12
1.2.1 Chaos in terms of phase fluid and baker’smap ............ 12
1.2.2 Smale-Williams solenoid.................coviieia. ... 15
1.2.3 DA-attraCtor ..........couuiuuuinuneeeneeneennnnnnnnns 16
1.2.4 Plykin type attractors . ... .......cououuuuueeneeennennnn. 17
1.3 Notion of hyperbolicity............ccoiiiiiiiiiiinnnnnnn... 19
1.4 Content and conclusions of the hyperbolic theory ................ 22
1.4.1 CoOnECrterion . ....vvvitiisiniiiiieeeeeeaannnnnnns 24
1.42 Instability ...........ccoiouiiiiiiiiiiiiiiiiia, 25
1.4.3 Transversal Cantor structure and Kaplan-Yorke
AUMCHSTON < 2 /5 s w6506 5 s 14 mso rs  6 ts a 25
1.4.4 Markov partition and symbolic dynamics ................ 26
1.4.5 Enumerating of orbits and topological entropy ............ 27
1.4.6 Structural stability ...............ccoiiiiiiiii... 28
1.4.7 Invariant measure of Sinai-Ruelle-Bowen ................ 29
1.4.8 Shadowing and effectof noise ......................... 30
149 Ergodicityand mixXing .............coviiiiiiinnnnnn.. 30
1.4.10 Kolmogorov-Sinai entropy ...............ceuveuuenn... 31

IRETCTEIICES 25 .5 610 52519 5/5 5 96 5 5 155 0 2 6 6 660 3 65 0 50615 608 6 4 005 00 G 5 o ol 5 [ 6. 6 31



xii

Contents

Possible Occurrence of Hyperbolic Attractors .....................
2.1 The Newhouse-Ruelle-Takens theorem and its relation to the

uniformly hyperbolic attractors .............oovuuvunnneeenens
2.2 Lorenz model and its modifications..................oooaeennn.
2.3 Some maps with uniformly hyperbolic attractors ................
2.4 From DA to the Plykin type attractor .....................o....
2.5 Hunt’s example: Suspending the Plykin type attractor ............
2.6 The triple linkage: A mechanical system with hyperbolic

AYTEADNICS! 4. 50 w50 0 i o s v s 9 QWSS 68 8 %50 1 K 70 615 kb, W srm oo &
2.7 A possible occurrence of a Plykin type attractor in

Hindmarsh-Roseneuronmodel ......................ooii..n.
2.8 Blue sky catastrophe and birth of the Smale-Williams attractor. . . ..
2.9 Taffy-pullingmachine............cooviiiiiiiiiinnnnnnennans
REFCTCIICES 5.5 55 5 5461 3566 1 5.5 o 5 & 608 080 500 6706 06 506 8 508 1 6107 5.60 8 08 604 18 3 s 08

Part II Low-Dimensional Models

3

Kicked Mechanical Models and Differential Equations with
Periodic SWICHL . . . oo o 605000 simis 5t a5 18 555 5§13 5675 005 56 i@ 616 5 i 9w
3.1 Smale-Williams solenoid in mechanical model: Motion of a
particle on a plane under periodic kicks ................. ...
3.2 A set of switching differential equations with attractor of
Smale-Williams type . .. ...ttt
3.3 Explicit dynamical system with attractor of Plykin type...........
3.3.1 Plykin type attractoronasphere........................
3.3.2 Plykin type attractorontheplane .......................
3.4 Plykin-like attractor in smooth non-autonomous system ..........
REIETENCES 3 5 545 4 b T ol VD SR S AL foe R S i S T SR R e iLE

Non-Autonomous Systems of Coupled Self-Oscillators..............
4.1 VanderPoloscillator ............cooiiiiiiiiiiinneennnnennn.
4.2 Smale-Williams attractor in a non-autonomous system of
alternately excited van der Pol oscillators.......................
4.3 System of alternately excited van der Pol oscillators in terms of
slow complex amplitudes .............cooviiiiiiiiiiiiiii...
4.4 Non-resonance excitation transfer .............................
4.5 Plykin-like attractor in non-autonomous coupled oscillators . . ... ..
4.5.1 Representation of states on a sphere and equations of the
OTEL. <, sror a1 2t s e e S B o am G- S R L E D ST
4.5.2 Numerical results for the coupled oscillators .............
RELCIETCES 4 5 5 hoamiioss oy DABE SR EREEREE S8 § 6.4 04 B Srmm B s RF BN S8

Autonomous Low-dimensional Systems with Uniformly Hyperbolic

Attractorsin the Poincaré Maps .................................

5.1 Autonomous system of two coupled oscillators with
self-regulating alternating excitation ...........................



Contents

5.2 System constructed on a base of the predator-prey model .........

5.3 Example of blue sky catastrophe accompanied by a birth of
Smale-Williams attractor ..............coiiiiiiiiniinnnn..n.

REFETENEES s pirinimimitsmeas tm s MImEBI R MM B T s BIB B MW 383

6 Parametric Generators of HyperbolicChaos ......................
6.1 Parametric excitation of coupled oscillators. Three-frequency
parametric generator and its operation . ........................
6.2 Hyperbolic chaos in parametric oscillator with Q-switch and
pump modulation .......... ... e
6.2.1 Dynamical equations .............c.veeeriiininnnnnn...
6.2.2 Qualitative explanation of the operation .................
6.2.3 Numericalresults ..............coiiiiiiinniinnnann..
6.2.4 Numerical results in the frame of method of slow complex
amplitudes.............iiiiiii
6.3 Parametric generator of hyperbolic chaos based on four coupled
oscillators with pump modulation .............................
6.3.1 Model, operation principle and basic equations ...........
6.3.2 Chaotic dynamics: results of computer simulation . . ... ....
RETETETICES 51 ¢ 65 51524915015 85 5795 55 510 55 65 50 56 ot i s o0 30 4 st 3 0

7  Recognizing the Hyperbolicity: Cone Criterion and Other
Approaches. ... ... ... ... .
7.1 Verification of transversality for manifolds .....................
7.1.1 Visualization of the manifolds .........................
7.1.2 Distributions of angles of the manifold intersections . . . ....
7.2 Visualization of invariant measures . . ..........................
7.3 Cone criterion and examples of its application ..................
7.3.1 Procedure of verification of the cone criterion ............
7.3.2 Examples of application of the cone criterion .............
References ..........coouiiniiinii i

Part III Higher-Dimensional Systems and Phenomena

8 Systems of Four Alternately Excited Non-autonomous Oscillators . . .
8.1 Arnold’s cat map dynamics in a system of coupled
non-autonomous van der Pol oscillators ........................
8.2 Dynamics corresponding to hyperchaoticmaps..................
8.2.1 System implementing toral hyperchaoticmap ............
8.2.2 Model with cascade transfer of excitation upward the
frequency spectrum ............. ...,
8.3 Hyperchaos and synchronous chaos in a system of coupled
non-autonomous oscillators .. ............. ... ...
8.3.1 Equations and basic modes of operation .................
8.3.2 Equations for slow complex amplitudes .................
References ...........cooiuiiiiiin e



Xiv Contents

9  Autonomous Systems Based on Dynamics Close to Heteroclinic

CYCIE .. o537 505 15 wrmste wmsrs o e 550610 & 360 3 € 45 M08 BT 0006 105 ) 8 056 s
9.1 Heteroclinic connection: an example of Guckenheimer and
HOLIIES! . o 1 1 s o0 e v e 0 6 5 10 0 1 o 00 9 63919 W08 8w a0 86

9.2 Attractor of Smale-Williams type in a system of three coupled
SEIF-OSCIIIALOTE . s s e 6558 018 08018 .8 904 e v i o o o 08 v o 4 8 70, 28
9.3 Attractor with dynamics governed by the Arnold catmap .........
9.4 Model with hyperchaos............coooiiiiiiiiiiiiinneienn
9.5 An autonomous system with attractor of Smale-Williams type
with resonance transfer of excitation in a ring array of van der Pol
OSCIHALOTE ¢ i« v & sy wtm i 50 5 9 5.5 11 016 o/ 93.6 1 s ke v 4 » g i 6 918 0 0 W o
REFCTETCEE s v on 5 & 595 357 FE TS 415 Vs GHEE g ok, 675 578 Soms 51 5 6 6 5 5 51 3 @ 313,00

10 Systems with Time-delay Feedback...............................
10.1 Some notions concerning differential equations with deviating
ACGUMCIIE. . o« oot w25 it 308 6773 1 4508 00 o 0 50 s i S B 0 s w9
10.2 Van der Pol oscillator with delayed feedback, parameter
modulation and auxiliary signal .. ............coiiiiiiiiiiin,
10.2.1 Attractor of Smale-Williams type in the time-delayed
SYSTBINL & ¢ v s om0 508 8 s 6 010 08 00 e w6 0 Wb 80 A B e I o0 8
10.2.2 Hyperchaotic attractors ..............ccvveveeeeieennnn
10.3 Van der Pol oscillator with two delayed feedback loops and
parameter modulation .. ...t
10.4 Autonomous time-delay system. ............ooviiiiiniiiiaan..
REICTENCES! , 1 5.00 5 o ot 58,9 546 577 18 N3 53 SBAEAE 0k 0hd o35 9k L8 § 1696 5% (4 § s BYE0

11 Chaos in Co-operative Dynamics of Alternately Synchronized

Ensembles of Globally Coupled Self-oscillators . ...................
11.1 Kuramoto transition in ensemble of globally coupled oscillators . . .
11.2 Model of two alternately synchronized ensembles of oscillators . . . .
11.2.1 Collective chaos in ensemble of van der Pol oscillators. . . . .
11.2.2 Slow-amplitude approach ........................ ...

11.2.3 Description of the dynamics in terms of ensembles of
phase 0scillators « : cswswimiss s wisismumsmswems G ms e ws
REICTEICES so5 55 555 mrasra e sms 0 i B85 REEE 00 68 HERasms 9 HEE i HEMeE

Part IV Experimental Studies

12 Electronic Device with Attractor of Smale-Williams Type ...........
12.1 Scheme of the device and the principle of operation ..............
12.2 Experimental observation of the Smale-Williams attractor. . .......
RETEIBNCES v 55 w0 B s S oS e Sk Srrsars b i Sl e o SR s



Contents XV

13 Delay-time Electronic Devices Generating Trains of Oscillations

with Phases Governed by ChaoticMaps .......................... 265
13.1 Van der Pol oscillator with delayed feedback, parameter
modulation and auxiliary signal............................... 265
13.2 Van der Pol oscillator with two delayed feedback loops and
parameter modulation . ...ttt 269
RETCIONCER 1ns 5es 315595 165 5§ 118 51 % 09 50 500 3.5 3 15 5 10 163 005 14 0 6 660 5 50 0 3 6 5 0 0 272
14 Conclusion ..............o.iiiuiiiiiii i, 273
References . ..... ...t 275
Appendix A Computation of Lyapunov Exponents:
The Benettin Algorithm ................................ 277
References .. ......ooivneiii i e 279
AppendixB HénonandIkedaMaps................................. 281
References .. ........ouuiniiii 287
Appendix C Smale’s Horseshoe and Homoclinic Tangle. ............... 289
References .. .......ooiuiiiiiiii i e 292
Appendix D Fractal Dimensions and Kaplan-Yorke Formula. . .. ....... 293
References .. .....coviuiiiiiiiiii i e 297
Appendix E Hunt’s Model: Formal Definition ........................ 299
References ...........ooviuiiiiiiiii i 303

AppendixF  Geodesics on a Compact Surface of Negative Curvature . . . . 305
RETEICIICRS: : . ¢ 5. ¢ e 5w s 0170 78 510 5 06 o w61 5 0w 0 5 6 L3 55 o 5 s B 309

Appendix G Effect of Noise in a System with a Hyperbolic Attractor . . .. 311
References . ... ..ottt 317



Part I
Basic Notions and Review






Chapter 1
Dynamical Systems and Hyperbolicity

Abstract In this chapter we review basic notions of the theory of dynamical sys-
tems essential for understanding subsequent chapters of the book. Particularly, a
definition of the dynamical system is discussed and some important classes like
continuous-time and discrete-time systems, conservative and dissipative systems,
autonomous and non-autonomous systems are introduced. Interpretation of dynam-
ics as evolution of a cloud of representative points in the state space is considered
and implemented for explanation of chaos and, particularly, for the uniformly hy-
perbolic attractors, like Smale-Williams solenoid, DA attractor of Smale, and Plykin
type attractors. Lyapunov exponents as a tool for quantitative approach to analyzing
chaotic or regular dynamics are examined, and methodic of their computation is dis-
cussed. Main notions of the hyperbolic theory are considered, and its substational
content is briefly reviewed.

1.1 Dynamical systems: basic notions

1.1.1 Systems with continuous and discrete time, and their mutual
relation

A finite-dimensional dynamical system is an object, for which one can specify a
state by a collection of a finite number N of real variables named a state vector,
supposing that there exists a definite rule called the evolution operator that makes
it possible to indicate precisely the state vector resulting from the initial one at any
latter time instant (Birkhoff, 1927; Schuster and Just, 2005; Thompson and Stewart,
1986; Strogatz, 2001; Hasselblatt and Katok, 2003). A set of all possible states is
a phase space, or state space; its dimension equals just the number of variables N
needed to specify the state vector. In other words, this is a space with coordinate
axes, each of which is associated with one dynamical variable from the set of N of
them.



4 1 Dynamical Systems and Hyperbolicity

Both continuous-time and discrete-time systems are introduced and considered;
in mathematical literature they are called flows and cascades, respectively.

Evolution of a state in time corresponds to motion of the representative point
in the phase space along the phase trajectory, or orbit. A set in the phase space is
called invariant set if all representative points from this set are transformed by the
evolution operator again to the points belonging to the same set.

In order to describe continuous-time autonomous systems, one can use differen-

tial equations of the form
dx/dt = F(x). (1.1)

Here x = (x1,X2,...,xy) is a state vector of dimension N, and F = (F; (x), F2(x),.. .,
Fy(x)) is a vector function. In coordinate notation,

d.X']/dt:Fl(xlyxZa"'axN)a

dxy/dt = Fy(x1,%2, ..., %N), (1.2)

de/dl = FN(X1 s Kdoiss ,xN).

By virtue of the theorem of existence and uniqueness of solutions for sets of dif-
ferential equations (Arnold, 1978), with a given state at some instant #y, one can
determine states in the future ¢ > #(, as well as in the past ¢ < #p. In other words, the
evolution of a state may be monitored both forward and backward in time.

If the right-hand side function F in the differential equation depends on time ex-
plicitly, the system is called non-autonomous. Physically, it corresponds to systems
operating in the presence of external time-dependent forcing. To specify the state
in this case, besides the vector x one needs to indicate the time instant it relates to.
Therefore, we introduce the space of dimension N+1 with an additional coordinate
axis ¢, which in this context is called the extended phase space. In this book, refer-
ring to non-autonomous systems, we will consider only the class of systems with
the functions periodic in time: F(x,z + T) = F(x,?).

Discrete time systems are described by evolution rules defined by iterated maps,
which correspond to transformation of the states step by step,

Xnt1 = 8(Xn)- (1.3)

Here x is a state vector, and g is a vector function specifying the evolution operator.
In this case, a phase trajectory is a discrete sequence of points in the phase space.
Evolution that takes place for k steps corresponds to k-fold iteration of the map; it is
designated as

Xnik = 8 (Xn) =8(8(---8(Xa) ) = gogo---0g(Xn). (1.4)

k times k times
Continuous time systems and discrete time systems are closely related. Proce-
dure of passage from one to another is known as the Poincaré section construction.
In phase space of a continuous time system one selects some fixed surface in such
a way that the phase trajectories cross it again and again in the course of the time



