Texts in
Applied
Mathematics
30

Springer

C.Gasquet

P.Witomski
Translated by R. Ryan

Fourier Analysis
and Applications

Filtering, Numerical
Computation,Wavelets

1 2 w25 A7 Ao N A

2B F ks 3)
www.wpcbj.com.cn




C. Gasquet P. Witomski

Fourier Analysis
and Applications

Filtering, Numerical Computation, Wavelets

Translated by R. Ryan

With 99 Illustrations

Springer

ZEP® oy S s)



Claude Gasquett
Université Joseph Fourier (Grenoble I)

Translator

Robert Ryan

12, Blvd. Edgar Quinet
75014 Paris

France

Series Editors

J.E. Marsden

Control and Dynamical Systems, 107-81
California Institute of Technology
Pasadena, CA 91125

USA

M. Golubitsky

Department of Mathematics

University of Houston

Houston, TX 77204-3476

USA

+Deceased.

Patrick Witomski

Directeur du Laboratoire LMC-
IMAG

Tour IRMA, BP 53

38041 Grenoble, Cedex 09
France

L. Sirovich
Division of Applied Mathematics
Brown University
Providence, RI 02912
USA
W. Jager
Department of

Applied Mathematics
Universitdt Heidelberg
Im Neuenheimer Feld 294
69120 Heidelberg
Germany

Mathematics Subject Classification (1991): 42-01, 28-XX

Library of Congress Cataloging-in-Publication Data

Gasquet, Claude.

Fourier analysis and applications : filtering, numerical
computation, wavelets / Claude Gasquet, Patrick Witomski.
p. cm. — (Texts in applied mathematics; 30)
Includes bibliographical references and index.

ISBN 0-387-98485-2 (hardcover)

1. Fourier analysis. 1. Witomski, Patrick.

I11. Series.
QA403.5.G37 1998
515°.2433—dc21

©1999 Springer-Verlag New York, Inc.

All rights reserved. This work may not be translated or copied in whole or in part without
the written permission of the publisher (Springer-Verlag New York, Inc., 175 Fifth Avenue,
New York, NY 10010, USA), except for brief excerpts in connection with reviews or scholarly
analysis. Use in connection with any form of information storage and retrieval, electronic
adaptation, computer software, or by similar or dissimilar methodology now known or hereaf-

ter developed is forbidden.

The use of general descriptive names, trade names, trademarks, etc., in this publication, even
if the former are not especially identified, is not to be taken as a sign that such names, as
understood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely

by anyone.

I1. Title.

98-4682

This reprint has been authorized by Springer-Verlag (Berlin/Heidelberg/New York) for sale in
the People’s Republic of China only and not for export therefrom.

ISBN 0-387-98485-2 Springer-Verlag New York Berlin Heidelberg SPIN 10658148



F  £&: Fourier Analysis and Applications
£ #%: G P Witomski

hOIF B HIIM RN A

HOE % HARBHRAFRRRAS
BBl . domttE e

2 47 HARPHEAFIERERLE EEFAXE 1375 100010)
BAHRBIE:  010-64015659, 64038347
BFER:  kisk@vip.sina.com
FoOoEx: 24F Bl 3K 195
HARER: 2005% 6 H

# B 7-5062-7267-9/ 0« 534
RRALEIR:  EF:01-2005-2231

£ #: 56007

5% & B & kR 2> Bl Jb 3 2 B B 3%48 Springer- Verlag 14 & Kb
BRRBEEIT.



Translator’s Preface

This book combines material from two sources: Analyse de Fourier et ap-
plications: Filtrage, Calcul numérique, Ondelettes by Claude Gasquet and
Patrick Witomski (Masson, Paris, sccond printing, 1995) and Analyse de
Fourier et applications: Frercices corrigés by Robert Delmasso and Patrick
Witomski (Masson, Paris, 1996). The translation of the first book forms
the core of this Springer edition; to this have been added all of the exercises
from the second book. The excrcises appear at the end of the lessons to
which they apply. The solutions to the exercises were not included because
of space constraints.

When Springer offered me the opportunity to translate the book by Gas-
quet and Witomski, I readily accepted because I liked both the book’s
content and its style. I particularly liked the structure in 42 lessons and
12 chapters, and I agree with the authors that cach lesson is a “chew-
able piece,” which can be assimilated relatively casily. Believing that the
structure is important, I have maintained as much as possible the “look and
feel” of the original French book, including the page format and numbering
system. I belicve that this page structure facilitates study, understanding,
and assimilation. With regard to content, again I agree with the authors:
Mathematics students who have worked through the material will be well
preparcd to pursue work in many directions and to explore the proofs of
results that have been assumed, such as the development of measure theory
and the representation theorems for distributions. Physics and engineering
students, who perhaps have a different outlook and motivation, will be well
equipped to manipulate Fourier transforms and distributions correctly and
to apply correctly results such as the Poisson summation formula.

Translating is perhaps the closest scrutiny a book receives. The process
of working through the mathematics and checking in-text references always
uncovers typos, and a number of these have been corrected. On the other
hand, I have surely introduced a few. [ have also added material: I have
occasionally added details to a proof where I felt a few more words of
explanation were appropriate. In the case of Proposition 31.1.3 (which is
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a key result), Excrcise 31.12 was added to complete the proof. I have also
completed the proofs in Lesson 42 and added some comments. Several new
references on wavelets have been included in the bibliography, a few of
them with annotations. All of these modifications have been made with
the knowledge and concurrence of Patrick Witomski.

Although the book was written as a textbook, it is also a useful reference
book for theoretical and practical results on Fourier transforms and distri-
butions. There are several places where the Fourier transforms of specific
functions and distributions are summarized, and there are also summaries
of general results. These summaries have been indexed for easy reference.

The French edition was typeset in Plain TEX and printed by Louis-Jean
in Gap, France. Monsieur Albert at Louis-Jean kindly sent me a copy of
the TEX source for the French edition, thus allowing many of the equations
and arrays to be copied. This simplified the typesctting and helped to avoid
introducing errors. My sincere thanks to M. Albert. Similarly, thanks go
to Anastis Antoniadis (IMAG, Grenoble) for providing the IXTEX source
for the cxercises, which was elegantly prepared by his wife. [ had the good
fortune to have had the work edited by David Kramer, a mathematician
and freclance editor. He not only did a masterful job of straightening out
the punctuation and other language-based lapses, but he also added many
typesctting suggestions, which, I believe, manifestly improved the appear-
ance of the book. I also thank David for catching a few of the typos that I
introduced; those that remain are my responsibility and embarrassment.

Robert Ryan
Paris, July 14, 1998



Preface to the French Edition

This is a book of applicd mathematics whose main topics are Fourier anal-
ysis, filtering, and signal processing.

The development proceeds from the mathematics to its applications,
while trying to make a connection between the two perspectives. On one
hand, specialists in signal processing constantly use mathematical concepts,
often formally and with considerable intuition based on experience. On the
other hand, mathematicians place more priority on the rigorous develop-
ment of the mathematical concepts and tools.

Our objective is to give mathematics students some understanding of
the uses of the fundamental notions of analysis they are learning and to
provide the physicists and engincers with a theoretical framework in which
the “well known” formulas are justified.

With this in mind, the book presents a development of the fundamentals
of analysis, numerical computation, and modeling at levels that extend
from the junior year through the first year of graduate school. One aim is
to stimulate students’ interest in the cohcrence among the following three
domains:

¢ Fourier analysis;
e signal processing;
¢ numerical computation.

On completion, students will have a general background that allows them
to pursuc more specialized work in many directions.

The general concept

We have chosen a modular presentation in lessons of an average size that
can be casily assimilated ... or passed over. The density and the level of
the material vary from lesson to lesson. We have purposcfully modulated
the pace and the concentration of the book, since as lecturers know, this
is necessary to capture and maintain the attention of their audience. Each
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lesson is devoted to a specific topic, which facilitates reading “a la carte.”
The lessons are grouped into twelve chapters in a way that allows one to
navigate easily within the book.

A progressive approach

The program wc have adopted is progressive; it is written on levels that
range from the third year of college through the first year of graduate
school.

JUNIOR LEVEL

Lessons 1 through 7 are accessible to third-year students. They intro-
duce, at a practical level, Fourier series and the basic ideas of filtering.
Here one finds some simple examples that will be re-examined and studied
in more depth later in the book. The Lebesgue integral is introduced for
convenience, but in superficial way. On the other hand, emphasis is placed
on the geometric aspects of mean quadratic approximation, in contrast to
the point of view of pointwise representation. The notion of frequency is
illustrated in Lesson 7 using musical scales.

SENIOR LEVEL

The reader will find a presentation and overview of the Lebesgue integral
in Chapter IV, where thc objective is to master the practical usc of the
integral. The lesson on measure theory has been simplified. This chapter,
however, serves as a good guide for a more thorough study of measure and
integration. Chapter VI contains concentrated applications of integration
techniques that lead to the Fourier transform and convolution of functions.
One can also include at this level the algorithmic aspects of the discrete
Fourier transform via the fast Fourier transform (Chapter III), the concepts
of filtering and linear differential equations (Chapter VII), an easy version
of Shannon'’s theorem, and an introduction to distributions (Chapter VIII).

MASTER LEVEL

According to our expericence, the rest of the book, which is a good half
of it, decmands more maturity. Here one finds precise results about the
fundamental relation f/*\g = f g, the Young inequalities (Chapter VI),
and various aspects of Poisson’s formula related to sampling (Chapter XI).
Finally, time-frequency analysis based on Gabor’s transform and wavelet
analysis (Chapter XII) call upon all of the tools developed in the first cleven
chapters and lead to recent applications in signal processing.

The content of this book is not claimed to be exhaustive. We have, for
example, simply treated the z-transform without speaking of the Laplace
transform. We chose not to deal with signals of scveral variables in spite of
the fact that they arc clearly important for image processing.
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Possible uses of time

This book is an extension of a course given for cngineering students during
their second year at E.N.S.IM.A.G.! and at [.U.P.2, We have been con-
fronted, as are all teachers, with class schedules that constrain the time
available for instruction. The 40 hours available to us per semester at
E.N.S.LM.A.G. or at [.U.P., which is divided equally between lectures and
work in sections, provides enough time to present the cssential material.

Nevertheless, the material is very rich and requires a certain level of
maturity on the part of the students. We arc thus led to assume in our
lectures some of the results that are proved in the book. This is facilitated
by the partition of the book into lessons, and it is not incompatible with a
good mathematics education. The time thus saved is more usefully invested
in practicing proofs and the usc of the available tools. The material is
written at a level that lcads to a facility in manipulating distributions, to a
rigorous formulation of the fundamental formula m = f*fi under various
assumptions, to an exploration of the formulas of Poisson and Shannon, and
finally, to precisc ideas about the wavelet decomposition of a signal.

Our presentation contrasts with those that simply introduce certain for-
mulas such as

+o0
/ e~ -9) gt = §(A - q)
-0

out of thin air, where one ignores all of the fundamental background for a
very short-term advantage.

Different possible courses

One can work through the book linearly, or it is possible to enter at other
places as suggested below:

Juniors
Chapters I, II, and III.

Seniors and Masters in Mathematics
Chapters IV, V, VI, VIII, and IX.

Seniors and Masters in Physics
Chapters VII, X, XI, and XIL

This book comes from many ycars of teaching students at E.N.S.I.M.A.G.
and I.U.P. and pre-doctoral students. In fact, it was for pre-doctoral instruc-
tion that a course in applied mathematics oriented toward signal processing

1Ecole Nationale Supérieure d’Informatique et de Mathématiques Appliquées de
Grenoble (Institut National Polytechnique de Grenoble)

2Institut Universitaire Professionnalisé de Mathématiques Appliquées ct Industrielles
(Université Joseph Fourier Grenoble I)
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was established by Raoul Robert. His initiative in this subject, which was
not his area of research, has played a decisive role, and the current explo-
sion of numerical work based on wavelets shows that his vision was correct.
Qur thanks go equally to Pierre Baras for the numerous animated discus-
sions we have had. Their ideas and comments have becn a valuable aid and
irreplaceable inspiration for us.

The second printing of this book is an opportunity to make scveral re-
marks. We have chosen not to include any new developments. We have
listed at the end of the book several references on wavelets, which show
that this area has exploded during these last years. But for the student or
the teacher te whom we address the book, the path to follow remains the
same, and the basics must be even more solidly established to understand
these new arcas of applications. It seems to us that our original objective
continues to be appropriate today.

We have made the necessary corrections to the original text, and a book
of exercises with solutions will soon be available to complete the project.

Claude Gasquet
Patrick Witomski
Grenoble, June 30, 1994
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