T RS el G TR T ol N ] R B R 752
s g - 1551 b - is
P S O TS PR A ENI QAL p i AN ) N AT AN




Modern Biochemical
Engineering

Guest Editor: T. Scheper

Dedicated to Prof. Karl Schiigerl
on the occasion of his 65th birthday

With contribution by

D. J. Barnes, 1. Economidis, 1. Endo, A. Fiechter,
S. Furusaki, G. E. Grampp, H. Hakanson,

M. N. Karim, 1. Karube, B. Mattiasson,

J. Nielsen, S. L. Rivera, A. Sambanis, M. Seki,
S. Shioya, B. Sonnleitner, G. N. Stephanopoulos,
T. Takeuchi

With 96 Figures and 27 Tables

‘Springer-Verlag .
Berlin Heidelberg NewY ork.

. London'Paris Tokyo
Hong Kong Barcelona Budapest




ISBN 3-540-55276-6 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-55276-6 Springer-Verlag New York Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, re-use
ofillustrations, recitation, broadcasting, reproduction on microfilms or in other ways,
and storage in data banks. Duplication of this publication or parts thereof is only
permitted under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and a copyright fee must always be paid.

© Springer-Verlag Berlin - Heidelberg 1992
Library of Congress Catalog Coard Number 72-152360
Printed of Germany

The use of registered names, trademarks, etc. in this publication does not imply, even
in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

Typesetting: Th. Miintzer, Bad Langensalza; Printing: Heenemann, Berlin;
Bookbinding: Lideritz & Bauer, Berlin
02/3020-5 4 3 2 1 0 — Printed on acid-free paper



4 6 Advances in Biochemical Engineering/
Biotechnology

Managing Editor: A. Fiechter



Managing Editor

Professor Dr. A. Fiechter
Institut fiir Biotechnologie, Eidgendssische Technische Hochschule
ETH — Honggerberg, CH-8093 Ziirich

Guest Editor

Dr. T. Scheper
Institut fiir Technische Chemie, Universitit Hannover
Callinstr. 3, D-3000 Hannover

Editorial Board

Prof. Dr. H. R. Bungay Rensselaer Polytechnic Institute, Dept. of Chem. and
Environment, Engineering, Troy, NY 12180-3590/USA
Prof. Dr. Ch. L. Cooney Massachusetts Institute of Technology,

Department of Chemical Engineering,
Cambridge, Massachusetts 02139/USA

Prof. Dr. A. L. Demain Massachusetts Institute of Technology,
Dept. of Biology, Room 56-123
Cambridge, Massachusetts 02139/USA

Prof. Dr. K. Kieslich Gesellschaft fiir Biotechnologie, Forschung mbH,
Mascheroder Weg 1, W-3300 Braunschweig

Prof. Dr. 4. M. Klibanov Massachusetts Institute of Technology, Dept. of
Chemistry, Cambridge, Massachusetts 02139/USA

Prof. Dr. R. M. Lafferty Techn. Hochschule Graz, Institut fiir
Biochem. Technol., Schlogelgasse 9, A-8010 Graz

Prof. Dr. S. B. Primrose General Manager, Molecular Biology Division,
Amersham International plc., White Lion Road
Amersham, Buckinghamshire HP7 9LL, England

Prof. Dr. H.J. Rehm Westf. Wilhelms Universitit, Institut fiir
Mikrobiologie, Corrensstr. 3, W-4400 Miinster
Prof. Dr. P. L. Rogers School of Biological Technology, The University

of New South Wales, P.O. Box 1,
Kensington, New South Wales, Australia 2033

Prof. Dr. H. Sahm Institut fir Biotechnologie, Kernforschungsanlage
Jiilich, W-5170 Jilich

Prof. Dr. K. Schiigerl Institut far Technische Chemie, Universitiat Hannover,
CallinstraBe 3, W-3000 Hannover .

Prof. Dr. G. T. Tsao Director, Lab. of Renewable ResourcesEng.,A. A. Potter

Eng. Center, Purdue University, West Lafayette,
IN 47907/USA

Dr. K. Venkat Corporate Director Science and Technology, H. J. Heinz
Company U.S. Steel Building, P.O. Box 57, Pittsburgh,
PA 15230/USA



iigerl

Dr. Karl Sch

Prof.



To
Professor Dr. Karl Schiigerl
on his 65th Birthday

On 22nd June 1992, Karl Schiigerl will spend his 65th birthday in
the midst of a large assembly of students, PhD students and colleagues
i the Faculty of Science. For him, as well as for the Institute of
Chemical Engineering of the University of Hanover, it is a day of
honour. Those involved in chemical and biological process engineering
will join in our congratulations to him on the day, and in our best
wishes to him for a happy future.

Karl Schiigerl has built up an exemplary career, which began after
he completed his chemical engineering studies at Budapest University
in 1949. Since that time he has continued to devote himself to research,
either in industry or at university. The first steps in his career were
in organic chemistry at Budapest University (1949-52); exper-
imental institutions in the organic-chemical industry, Budapest
(1952-55), a design studio for bioplant (1955-56 ). and at Riedel
de Haen AG in Seelze, Germany (195658 ). He later completed his
PhD degree at Hanover University in the kinetics and rheology of
fluid bed systems and spent three years of posi-doctorate work at
the Universities of New York (high-temperature pyrolysis of hy-
drocarbons) and Princeton in the USA, where he was closely involved
Jor one and a half years in fundamental investigations of molecular
beams for aerospace research. Soon after his return to Germany, he
qualified for inauguration as a lecturer in Hanover and shortly
afterwards accepted a professorship in process engineering at Braun-
schweig University. In 1969, he finally returned to Hanover Univer-
sity. In due course, the purposeful nature of his work developed the
Institute for Chemical Engineering into a research institute concen-
trating on biological process engineering. His early work on high-
temperature pyrolysis of olefins and on molecular beam ultrasonic
applications opened up typical problem areas relating to mass transfer
in chemical processes. Hydrodynamics in single drops, three-phase
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fluid beds, cryosorption, residence time distributions, test material
mixing, and flash photolysis were typical fields of work in the 1960s
and 1970s. Hundreds of experimental publications bear witness to
his comprehensive knowledge in these fields. The urge towards
constantly new fields of work led Karl Schiigerl in 1975 into
biotechnology, in which today his institute occupies a dominant
position. It has taken a leading role particularly in on-line measure-
ment and control of biological process engineering. Karl Schiigerl
was one of the first chemical engineers in Germany to conduct
extensive unalyses of biological aspects. These also include hundreds
of papers in the biological field which omit hardly any of the major
measuring techniques or process applications. Bacteria, yeasts or
Jungi are the main agents in this highly developed discipline. New
solutions to the problems of future improvements in performance are
sought using the most modern methods of analysis and software. His
present areas of interest have recently even extended beyond biological
process engineering and today cover environmental technology, bio-
sensors, the disposal of highly polluted effluent, soil renewal and
hydrometallurgy.

Karl Schiigerl has always refused illustrious offers from renowned
universities, thereby dedicating himself to developments in Hanover,
this was certainly the result of his important recognition that only
determined efforts would lead to progress in the rapidly developing
field of biotechnology.

It would seem significant in this connection that he willingly accepts
many calls on his time to act as consultant and expert. He acts as
adviser to countless institutions both in Germany and abroad in the
academic and public domain, where his reliable advice and support
are highly esteemed. Between 1982 and 1986, he administered the
department for biological process engineering at the GBF ( Associa-
tion for Biotechnological Research) in Braunschweig.

Today, 700 publications, including five books, bear witness to the
iron discipline by which Karl Schiigerl has developed his view of
things. Nevertheless he has remained an approachable and cherished
colleague, who always finds time for scientific requests. This also
holds true for the next generation of scientists for whom he not only
_proposes attractive subject areas, but also provides support as a helpful
adviser in professional and personal problems. There are many of his
Sformer PhD students who today are themselves in academic positions,
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and who are able to pass on the enthusiasm for science of their former
teacher to the coming generations. In industry too, graduates from
Hanover have become successful and, with their knowledge and skill,
are able to support their, companies in these times of stiff economic
competition.

Recently, the academic and scientific services of our honoured
colleague have been recognized by Budapest University with an
honorary doctorate.

This present publication allows the authors to add their apprecia-
tion. Their contributions demonstrate the wide interests of Karl
Schiigerl, which cover many subsidiary fields. We hope in this way
10 give him great pleasure and thereby to demonstrate the high esteem
in which we hold him.

Those who are familiar with the great creative powers of this gifted
scientist cannot imagine any slackening of his efforts in the promotion
of research and education. We offer our good wishes for his health
and the best conditions for the accomplishment of his plans.

Armin Fiechter



Attention all “Enzyme Handbook” Users:

A file with the complete volume indexes Vols. 1 through 5 in
delimited ASCII format is available for downloading at no charge
from the Springer EARN mailbox. Delimited ASCII format can
be imported into most databanks.

The file has been compressed using the popular shareware program
“PKZIP” (Trademark of PKware INc., PKZIP is available from
most BBS and shareware distributors).

This file is distributed without any expressed or implied warranty.
To receive this file send an e-mail message to:
SVSERV@DHDSPRI6.BITNET.

The message must be: “GET/ENZHB/ENZ _HB.ZIP".

SPSERYV is an automatic data distribution system. It responds to
your message. The following commands are available:

HELP returns a detailed instruction set for the
use of SVSERYV,

DIR (name) returns a list of files available in the
directory “name”,

INDEX (name) same as “DIR”

CD <name) changes to directory “name”,

SEND <(filename) invokes a message with the file “filename”,

GET <filename) same as “SEND”.



Table of Contents

Artifical Neural Networks in Bioprocess State Estmation
M.N.Karim, S:L.Rivera . . . . . . . . . . . . .. 1

Use of Regulated Secretion of Protein Production from
Animal Cells: An Overviev
G. E. Grampp, A. Sambanis, G. N. Stephanopoulos . . . . 35

Biotechnological Reduction of CO, Emissions
1. Karube, T. Takeuchi, D.J. Barnes . . . . . . . . . . 63

Immunochemically Based Assays for Process Control
B. Mattiasson, H. Hakanson . . . . . . . . . . . . . 81

A Human Genome Analysis System (HUGA-I)
Developed in Japan
TENdod TR FEe sttt | L L L s . e e e e o e e 103

Optimization and Control in Fed-Batch Bioreactors
SSRIOVA'S 5w v e & st 55 w3 B s s e e s s 111

Impacts of Automated Bioprocess Systems on Modern
Biological Research

B. Sonnleitner, A. Fiechter . . . . . . . . . . . . .. 143
Use and Engineering Aspects of Immobilized Cells in
Biotechnology

S. Fornsaki, ML Seki . . 270 a6 v sie woomrwwilw doa 161

Modelling the Growth of Filamentous Fungi
INielsen. .. o0 dieme i5ia %00 Bl e & 8 8 8 187

An Overview of the Biotechnology Research Activities
in the European Community
L.EconomidiS « : s = 5 : = w5 3 » & 3 @ 5 % @ & & s 225

Author Index Volumes1-46 . . . . . . . . . . . . . 235

Subject Index . . . ... R 249



Artificial Neural Networks in Bioprocess
State Estimation

M. N. Karim and S. L. Rivera
Department of Agricultural and Chemical Engineering, Colorado State University,
Fort Collins, CO. 80523, U.S.A.

LABE 61 STIABOIE wo = comis = w3016 0 2 rower 5 vy 5 aim 5 500 5 5053 5 g 5 ri 5 v 22 MO B B R B S GBS ¢ S B S D06 8 6 2
1 Introduction . s:icacmermasmurmasassneis e s mus a@ssmis s SEaa R naine s @80 indsms 3
2 Estimation Methods in BiOprocesses . ... ........uoieireneeeinoeenaannn.n. 4
3 Overview of Neural Networks ....... ... i S
4 Theory of Neural Networks ........................ T I I 7
4.1. The Training Algorithm ............................ 23 e o s o o o e 2 12
4.2 Outline of the Estimation Scheme . ......... .. ... ..., 13

5 Description of the Case Studies ......... ...t 14
6 Casc Study 1. Experimental Batch Cultivation ............... ... ... .......... 15
6.1 Materials and Methods . .......... i 15
6.1.1 OIZaniSIm . ...ttt et ettt e e e e 15

6.1.2 Medium . ... 15

6:1.3 Batch Culture SYSIEIM «ucussussmnssessmes s ssmesamssngssssnssmss 15

6.1.4 Analytical Methods ..........coo ittt 15

6.2 Analysis of the Neural Network Estimator ............................... 16
6.2.1 Training Data and Training Procedure ............................. 16

6.2.2 Test Data and Testing Procedure ..............c.ooiiiiiiiiinnnn. .. 22

7 Case Study II. Cell-Recycle System Simulation ............................... 25
7.1 Model for Ethanol Production: Cell-Recycle System ....................... 25
7.2 Simulation Studies and Results .......... ... .. i 27

8 CONCIUSIONS s ussunmusmesmssmssnsssssmssunssansssussamssaessaosansani@oemssn 30
O RCICTEINCES: 555 555 55w 58535 83 Fhe S B § SO T IS RIS 3 5 TGS S AT Bl Ha bt min s e g 31

The application of artificial neural networks to the estimation and prediction of bioprocess
variables 1s presented in this paper. A neural network methodology is discussed, which uses
environmental and physiological information available from on-line sensors, to estimate
concentration of species in the bioreactor. Two case studies are presented, both based on
the ethanol production by Zymomonas mobilis. An efficient optimization algorithm which
reduces the number of iterations required for convergence is proposed. Results are presented
for different training sets and different training methodologies. It is shown that the neural
network estimator provides good on-line bioprocess state estimations.

Advances in Biochemical Engineering
Biotechnology, Vol. 46
Managing Editor: A. Fiechter
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List of Symbols

In Z. mobilis Kinetic Model:

a Power of the ethanol inhibition term in u

b Power of the ethanol inhibition term in g,

D h~! Dilution rate

F lh~! Permeate flow

F, lh™! Total feed flow to the system

K; gl™! Substrate inhibition constant for growth

K; gl™! Substrate inhibition constant for ethanol production

K, gl™! Monod kinetic constant

K, gl™! Saturation constant for g,

p gl™! Ethanol concentration

P; gl™! Ethanol threshold concentration for ethanol production
P, gl™! Maximum ethanol concentration for cell growth

P, gl™! Maximum ethanol concentration for ethanol production
q, gg 'h™! Specific ethanol production rate

Maximum specific ethanol production rate
Recycle ratio

e
3
o
s
-
=
I

s gl™! Glucose concentration

S; gl! Threshold substrate concentration for cell growth

So gl™! Glucose concentration in the feed stream

X gl™! Biomass concentration

Xmax gl™! Maximum cell concentration

Yos gg! Ethanol yield, g ethanol per g substrate consumed

u h™! Specific growth rate

Homo h-! Maximum specific growth rate at zero ethanol concentra-

tions

In Neural Network Theory :

d, L-dimensional target vector
E, Sum-of-squares error for training example p
E(w) Total sum-of-squares error for all input patterns, function of weight
vector w
G@ Vector of steepest descent directions in iteration (gq)
gy Gradient vector of one input-output pattern p
gl Element of the gradient vector g!?
n Number of interconnection weights in the network
pi Output of neuron j from the training set p
p number of training pattern
q number of iteration
'Y Vector of conjugate gradient directions in Ey. (17)
S, Activation state of neuron j from the training set p
S@ Vector of search directions for conjugate gradient algorithm

wd Vector of neural network weights in iteration ¢
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Wi Interconnection weight from node i to node j
X, N-dimensional network input vector
Yp L-dimensional network output vector
7@ Vector of conjugate gradient directions in Eq. (16)
a'® Step size in iteration g used in Eq. (8)
B9 Step size in iteration g used in Eq. (17)
pl@ Step size in iteration g used in Eq. (16)
- Change in E, due to changes in neural activation state S,,,.
g Argument of the sigmoid function.

1 Introduction

The successful operation, control and optimization of bioprocesses rely heavily
on the availability of a fast and accurate evaluation of the system performance.
This in turn requires reliable real-time process variable information. Direct on-line
measurements of primary process variables, such as biomass, substrate and product
concentrations, usually are unavailable. Most industrial bioprocess control policies
are based upon the use of infrequent off-line sample analysis, leading to poor
process operability and regulation. The state of the cultivation, therefore, has to
be inferred from measurements of secondary variables and any previous knowledge
of the process dynamics.

In recent years, several techniques have been developed for indirect estimation
of process variables and data analysis of biological systems. Approaches range
from statistical methods, including linear and nonlinear regression, to artificial
intelligence techniques, for determination of rules for expert systems from on-line
data. Estimation techniques generally are used to predict unmeasurable process
variables, and/or to identify process model parameters, by establishing the structure
of a process model. However, it is well-known that models of real nonlinear systems
possess a great amount of uncertainty. This is due in part to imprecise measuring
devices, environmentally dependent system parameters, or disturbances inherent
in the plant. However, the most important cause of process/model mismatch is
perhaps our incomplete knowledge of the system dynamics. The quality of
the estimation depends greatly on the depth of understanding of the process.
Methods which can provide an adequate estimation of process states and
parameters in spite of incomplete process knowledge could be successfully applied
in control and optimization of bioprocesses.

The use of artificial neuzal nets for identification and control of chemical and
biochemical plants has recently been the focus of some research groups [1, 2, 3,
4, 5]. Artificial neural nets are highly interconnected networks of non-linear
processing units arranged in layers and having adjustable connection strengths
(weights) [6]. Neural networks can approximate large classes of nonlinear functions
by changing the strengths of the connections on the links, a procedure which is



4 M. N. Karim and S. L. Rivera

called learning. Neural networks are well-known for their ability to adjust
dynamically to environmental changes, to perform useful generalization from
specific examples, and to find relevant regularities in the data. Recent applications
of neural nets have been mostly in the areas of speech recognition, image processing,
optimization problems, robotics, decision making, and identification and control.
However, no non-trivial experimental validation of state estimation in biological
systems using neural networks has been reported in the literature.

In this paper, we will present some applications of artificial neural networks to
the estimation and prediction of bioprocess variables. Biological kinetic models
seldom include the influence of environmental factors, like pH and temperature.
The development of quantitative models which simulate how cells respond to
various environmental changes, will help in better utilizing the chemical synthesis
capabilities of the cells. We will discuss a neural network methodology which will
use environmental and physiological information available from on-line sensors,
to estimate concentrations of species in the bioreactor.

Two case studies will be presented, both based on ethanol production by
Zymomonas mobilis. Yeasts and bacteria have been successfully used in the past
for bulk production of ethanol. Reported data on ethanol productivities for yeasts
and Z. mobilis have demonstrated that Z. mobilis is superior to yeasts as far as
productivity is concerned [7]. Both the specific ethanol productivity and specific
glucose uptake rate are several times larger in Z. mobilis than in yeasts; this is
associated with lower levels of biomass formation during the cultivation. Given
the obvious advantages of Z.mobilis for industrial ethanol production, it is
worthwhile to investigate ways of improving the bioprocess evaluation, by means
of better process variable predictions. Neural networks applied in this context
will demonstrate to be a powerful tool for identification and control in biological
systems.

2 Estimation Methods in Bioprocesses

In terms of control and optimization, bioprocesses are not more complex or unique
than any other chemical process. However, species are ill-defined and interact.
and the kinetics is poorly understood [8]. Both process and disturbance dynamics
are uncertain and variable. This lack of knowledge of the underlying principles,
together with the scarcity of appropriate biosensors, is what makes the identifica-
tion procedure so difficult.

Different estimation-filtering techniques have been developed to aid in the
prediction of the biological and physicochemical parameters needed for control
and regulation. Identification techniques may be divided into parameter estimation
and functional estimation [9]. The parameter estimation approach is simple, if one
can safely assume a known system function with only unknown parameters.
Functional estimation deals with the estimation of the system function, as well as
its parameters.

Model-based estimation methods, are parameter estimation techniques, where
usually simplified nonlinear kinetic models and/or material balance equations [10,
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11] are defined. This approach is useful in cases when all the species involved are
known and their elemental composition.is completely defined and time-invariant.
Otherwise, changes in growth rates or in the nature and composition of the medium
may affect the chemical composition of the cells [12], invalidating the process
description. %

Other parameter estimation techniques include the least-squares fitting of linear,
time series models, valid only in a certain operating range. The success of this
approach depends on the match between the actual system dynamics and the
linearized approximation. Adaptation can provide some improvement in the
estimation, but in general, these models do not represent the dynamic nonlinear
behavior of the process accurately. Several examples of this approach exist in the
literature [13, 14, 15].

Stephanopoulos and San [16] integrated the concept of material balance with
estimation using a Kalman filter, for the simultaneous state and parameter
estimation of a bioprocess system. Kalman filtering is a technique for estimating
the underlying trend in noisy measured data. Due to the iterative nature of the
filter, an inaccesible state variable can be estimated via an imperfect process model
[8). An extension to the Kalman filtering technique involves the use of nonlinear
models and their subsequent linearization. Several applications of the Extended
Kalman Filter (EKF) for state estimation in biotechnological processes have been
reported [17, 18, 19]. However, in spite of the apparent success of this widely used
estimation technique, care should be exercised due to its inherent limitations.
Assumptions of the EKF include the use of a linear process model (or a linearized
version of a nonlinear model), previous knowledge of the covariance matrices of
the state and output noise, and a good initial value for the filter covariance.
Sensitivity problems in biological systems due to deviations from this assumptions
may cause the performance of the estimator to deteriorate, resulting in biased
estimates of the states.

Since the biochemical process is non-linear, a better estimation is to be expected
from exploiting a nonlinear structure for designing the estimator. Bastin and
Dochain [20] applied asymptotic observers for the estimation of specific growth
rate. These are a class of estimators that can handle nonlinearities in the process
model. Improvements to this algorithm have been proposed [21], but two main
disadvantages remain: high sensitivity to wrong initial guess of the biomass
concentration and the use of off-line measurements to define the state of the process.

Therefore, it appears that a major improvement in bioprocess control and
optimization can be made if one has an estimation algorithm which can effectively
reduce the off-line analysis frequency, while maintaining the quality of the
information available.

3 Overview of Neural Networks
Neural networks offer the opportunity to directly model nonlinear processes, and

estimate or predict the values of relevant process variables. Artificial Neural
Networks (ANNs) models consist of a large number of simple interconnected
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nonlinear computational elements (rneurons). The strength of the links between
nodes is typically adapted during use to improve performance. Neural networks
have received wide interest during the last years due to their abilities of learning,
generalization and abstraction.

At present, in chemical and biochemical engineering applications, the most
widely used neural net training method is backpropagation, a generalization of the
Least Mean Square Error algorithm. Backpropagation uses an iterative gradient
search technique to minimize a performance function, equal to the mean square
difference between the desired and the actual net outputs. Several applications of
ANNs trained by backpropagation have been reported in the literature.

ANNSs have been applied as a method for identifying regular patterns in data.
Qian et al. [22] presented a new method for predicting the secondary structure of
globular proteins based on nonlinear neural network models. Network models
learned from existing protein structures how to predict the secondary structure
of local sequences of amino acids. The use of this technique provided a significant
improvement over existing methods for nonhomologous proteins. In another
application, McAvoy et al. [23] used neural nets to deconvolute fluorescence spectra
obtained from solutions of amino acid fluorophores. They showed that neural
nets are superior to standard linear techniques in estimating the solution
concentrations, due to the adequate handling of the nonlinearities in the spectral
data. ’

Neural networks are well-suited to learn and retrieve correlations between
measurements and faults or responses, and are particularly useful when the
measurements are incomplete or inaccurate [2, 24]. A technique for the application
of neural nets for diagnosing process failures during process transients has been
recently investigated [3]. The symptom patterns were presented to the network in
two ways: by using a raw time-series process sensor data and by using a moving
average value of the same time-series data. Both methods were successful in
detecting simple and interactive faults, even when they were trained only in single
fault cases. This demonstrates the neural networks ability for generalization.

Other recent research deals with the feasibility of using neural networks for
estimation and control of nonlinear plants. Bhat et al. [5] investigated the use of
neural nets trained by backpropagation to estimate and control the variables of
a simulated pH CSTR. They extended the backpropagation approach to enable
the dynamic modeling of a nonlinear process by including past values of process
variables as inputs to the network. Their results showed a better overall estimation
compared to traditional linear ARMA (autoregressive moving average) modeling.
This approach, using a temporal or sliding window, has also been investigated by
other researchers [25, 26, 27]. Since only simulation analysis were performed, it was
assumed that all the required process variables were available on-line, an
assumption which is not always valid. One of the disadvantages of using temporal
windows is that process delays should be knowr. so that an adequate number of
past observations can be used, in order to include the influence of all input
variations on the prediction of the outputs.

Adaptive learning is one of the most attractive features of neural networks,
since they learn how to perform certain tasks by undergoing training with



