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IMPROVING INS/GPS INTGRATION FOR MOBILE ROBOTICS
APPLICATIONS

Tariq Salman AbuHashim, Candidate for Master of Science in Mechatronics
Engineering

American University of Sharjah, 2008

ABSTRACT

As unmanned systems become more and more important, reliability and in-
tegrity issues become definite, specially when being implemented with low-cost (or
sometimes are referred to as commercial-of-the shelf or COTS) sensors while being
designed to operate in remote, hazardous and harsh environments. As a result, fault
(and failure) detection and identification (FDI) is a must, and it is a crucial require-
ment in designing unmanned vehicles. In this thesis, integrity is defined as the ability
of the system to provide reliable navigation information, to monitor the health of the
aids, to detect abnormalities in their behavior, and to survive once a failure in one
of its components (whether they are sensors, actuators, mathematical models, and
computations) occurs. On the other hand, reliability is component dependent. A
navigation system is reliable as its most unreliable component. Therefore, integrity
implies reliability while reliability not necessarily implies integrity.

This thesis, mainly, discusses the issue of implementing a low-cost inertial
navigation system, aided with satellite navigation system. In doing so, a fault de-
tection and identification scheme must be involved and the performance of all the
system components must be verified. The FDI system should take into account types
of failures commonly occur, guarantee that all faults will be detected, assist design
specifications and respond as fast as possible to faults. On the other hand, it should
take into account the complexity of the implementation and its robustness in the
presence of mismodelling. Innovation-based techniques, in particular the x> SCT.
offer tradeoffs between complexity and performance and detect a large set of failures.
However, they are sensitive to filter tuning and have no fault identification ability.
On the other hand, the model-based approaches, in particular the multiple model
adaptive estimation (MMAEY), have an outstanding decision making ability and are
insensitive to filter tuning. However, they require a priori knowledge on the system
and failure model and are computationally expensive. The integration of both tech-
niques can enhance the FDI performance of both systems. In this thesis a sequential
FDI algorithm is proposed. This algorithm employs an innovation-based technique
for fault detection and a model-based technique for identification.
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The performance of the x>-MMAE sequential algorithm is simulated and tested
on actual IMU and GPS data. Results showed that the sequential algorithm has a
comparable identification ability as the MMAE algorithm with a substantial reduction
in computational requirements. since the filters bank was only allowed to operate
on segments of time where faults were detected. On the other hand. unlike the
MMAE algorithm where the performance of the filter was affected during no-fault
conditions, the sequential scheme guaranteed the consistency of the estimator in all
of its modes of operation and didn’t affect its performance during normal no-fault
modes of operation.
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Notation
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N4 = [wAx]

NOMENCLATURE

Direction cosine matrix transforming quantities from A frame to B
frame

Angular rate of B frame relative to A frame expressed with compo-
nents in B frame

Vector b with components in A frame

Skew symmetric matrix with components of w in A frame

Axis System (Reference Frames), Angles and Transformations
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Inertial reference frame
Earth-fixed reference frame
Navigation reference frame
Body reference frame
Mechanisation frame
Inertial axis system
Earth-fixed axis system
Navigation axis system
Body axis system

Altitude

Latitude

Longitude

Roll angle

Pitch angle

Yaw angle

Earth Quantities (WGS-84)

In
a
b
Q

g9
f

Normal gravitational acceleration (p = 45°)

Equatorial radius of the Earth (semimajor axis) = 6378137.000 m
polar radius of the Earth (semiminor axis) = 6356752.3142 m
Earth turn rate with respect to i frame = 7.292116 x 1075 rad/s
Local gravity column matrix

Flattening (ellipticity) = 1/298.257223563 (0.00335281066474)

xvii



e Major eccentricity of Earth = 0.0818191908426

i Earth'’s gravitational constant = 3986005 x 103m?/s?
M Mass of Earth (including the atmosphere) = 5.9733328 x 10** Kg

Dynamic Quantities

Va Normal gravitational acceleration (@ = 45°)
v Kinematic velocity expressed in n frame
why Angular rate of b frame relative to n frame expressed in b frame
Wi, Angular rate of n frame relative to e frame expressed in n frame
wh, Angular rate of b frame relative to n frame expressed in b frame
i Specific force in b frame
i Specific force in n frame
VN, VE.UD The north, east and down components of V7
fn, fe.fp The north, east and down components of f7
Subscripts
Jr ksl Indexes for high speed computer cycle (j-cycle), moderate computer
speed cycle (k-cycle) and low computer speed cycle (l-cycle) respec-
tively
N,E,D North, East and Down components of n frame vector
Symbols
(k|k —1) Used to denote a quantity at time k immediately before the measure-
ment update
(k|k) Used to denote a quantity at time k immediately after the measure-
ment update
z(k—1) A growing length measurement history vector consisting of all mea-
surement vectors from 0 through k — 1
P(x) Probability density function of x
gk Set of k observations
Abbreviations
ACFR Australian Center for Field Robotics
Al Artificial Intelligence
CMA Covariance Matching Approach
COTS Commercial-Of-The-Shelf
CR Confidence Region
DCM Direction Cosine MAtrix
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DGPS
DoD
DoF
ECEF
ECI
EKF
FDI
FMEA
GA
GDOP
GLONASS
GLR
GPS
GRMMAE
IMM
IMU
INS
I0DC
IODE
KF
LKF
LOS
MBKF
MMAE
MMSA
MTBF
NA
NASA
NED
NEES
NIS
NN
PDF
PPS
PRN
PSO
SA
SCT
SDINS

Differential Global Positioning System
Department of Defence

Degrees of Freedom

Earth-Centered Earth-Fixed
Earth-Centered Inertial

EKF

Fault Detection and Identification
Failure Modes and Effective Analysis
Genetic Algorithms

Geometric Dilution of Precision
Global Navigation Satellite System
Generalized Likelihood Ratio

Global Positioning System
Generalized Residual Multiple Model Adaptive Estimation
Interactive Multiple Model

Inertial Measurement Unit

Inertial Navigation System

Issue Of Date Clock

Issue Of Date Ephemeris

Kalman Filter

Linear Kalman Filter

Line of Site

Multiple Bank Kalman Filters
Multiple Model Adaptive Estimation
Minimal Mean Squared Error

Mean Time Between Failure
Navigation Algorithm

National Acronautics and Space Administration
North-East-Down

Normalized (state) Estimation Exror Squared
Normalized Innovation Squared
Neural Networks

Probability Distribution Function
Precision positioning System
pseudorandom noise

Particle Swarm Optimization
Selective Availability

Statistical Consistency Test
Strapdown Inertial Navigation System
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SLAM
SPRT
SPS
SV
TOW
UAV
UGv
UKF
UT

Simultaneous Localization and Mapping
Sequential Probability Ratio Test
Standard Positioning System

Satellite Vehicle

Time Of Week

Unmanned Aerial Vehicle

Unmanned Ground Vehicle

Unscented Kalman Filter

Unscented Transformation



GLOSSARY OF TERMS

Conning: The cyclic motion of one axis due to rotational motion of the other two
axes (Sukkarieh, S., 2000). Such motion can result due to oscillatory motion
such as vibration being undetected by the inertial navigation system.

Dead reckoning: Types of navigation systems which rely on the continuous up-
dating of the position data derived from inputs of velocity components or speed
and heading generated from a known start position. Inertial navigation systems
are considered as sort of dead reckoning systems.

Disturbance: An unknown and uncontrolled input acting on a system (Gustafsson,
F.. 2000).

Ellipsoid: A three-dimensional shape formed by rotating an ellipse about its minor
axis.

Ergodicity: A process is considered ergodic if all of its statistical parameters, mean,
variance, and so on, can be determined from arbitrary chosen member functions.
A sampled function is considered ergodic if its time-average statistics equal the
ensemble averages (Grewal, M. S., & Andrews; A. P., 2001).

Error: Deviation between a measured or computed value of an output variable and
the true, specified or theoretically correct value (Gustafsson, F., 2000).

Failure: Permanent interruption of a system ability to perform a required function
under specified operating conditions (Gustafsson, F., 2000).

Fault: Unpermitted deviation of at least one characteristic property of paramecter
of the system from acceptable / ususal / standard condition (Gustafsson, F.,
2000).

Fault detection: Determination of faults present in a system and time of detection
(Gustafsson. F., 2000).

Fault isolation: Determination of kind, location and time of detection of fault.
Follows fault detection (Gustafsson, F., 2000).

Fault identification: Determination of the size and time-variant behavior of a
fanlt. Follows fault isolation (Gustafsson, F.. 2000).



Fault diagnosis: Determination of kind, size, location and time of fault. Follows
fault detection and includes fault isolation and identification (Gustafsson, F.,
2000).

Monitoring: A continuous real time task of determining the conditions of a physical
system, by recording information recognizing and indicating anomalies of the
behavior (Gustafsson, F., 2000).

Perturbation: An input acting on a system which results in a temporary departure
from current state (Gustafsson, F., 2000).

Residuals: Processed measurements. Kalman filter residuals, which are the dif-
ferences between state estimates predictions and the measurements predictions
are called innovations. They can be used as fault indicators, based on deviation
between measurements and model-equation-based computations.

Sagnac Effect: When computations for the satellite position are made in an ECEF
coordinate system, and during the propagation time of the satellite vehicle signal
transmission, a clock of the surface of the Earth will experience a finite rotation
with respect to an ECI coordinate system (Kaplan, E. D., & Hegarty.C. J.,
2006)

Sculling: A combination of linear and angular oscillatory motions of equal frequency
in orthogonal axes.

Symptom: Change of an observable quantity from normal behavior (Gustafsson,
F., 2000).

Time-Invariant System: A system is time-invariant if a time shift in the input
result in a corresponding time shift in the output. The output of a time-invariant
system depends on time differences and not on absolute values of time (Stremler,
F. G., 1990).
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