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Foreword

This book gathers together chemical ideas which are important for
understanding how drugs act and how new drugs may be
developed. Students meet some of these ideas in courses in
chemistry, biochemistry and pharmacology but in my experience
they find it difficult to put together information often acquired in
different years and from different departments; they need it set out
in a book.

I believe also that it helps if they can see how these ideas may be
applied to numerical problems so I have included examples (with
answers), many of which are taken from research work. These
should therefore provide a chance for the student both to test his or
her own understanding and to see the sort of results which form the
bricks of which any experimental science is made. In all the
problems the arithmetic takes less than ten minutes with a small
calculator which has exponential functions and logarithms.

From this collection of information and ideas the book proceeds
to consider some of the attempts which have been made to relate
chemical properties quantitatively to biological activity and to
predict the activity of new compounds from results obtained with a
carefully selected trial group. It is important that the medicinal
chemist and the biologist work together in this aspect of drug
development and the book attempts to explain what the medicinal
chemist is doing and to consider some of the assumptions he
makes.
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CHAPTER 1

Measuring Drug Activity

‘A branch of science comes of age when it becomes quantitative.”
J. H. Gaddum, Edinburgh Medical Journal (1942) no. 49, p. 731.

Introduction

The development of drugs starts with the recognition that some
particular pharmacological effect may be useful therapeutically.
Sometimes an application can be seen before there is a compound
with the desired properties. Past history often suggests the reverse:
several important drugs, such as the sulphonamides, have been
made by the chemist years before their therapeutic value was
realised. In either situation an initial discovery depends upon both
an understanding of what may be useful and upon a knowledge of
what drugs do; it requires both the flash of genius and the
humdrum collection of pharmacological information.

Once something potentially useful has been found it is necessary
to know not only what a substance does but how well it does it, so
that comparisons can be made and better drugs discovered. This
may not be easy. The effects which the pharmacologist is called
upon to study are extremely diverse. Some are much more difficult
to detect and compare than others and less reliance can be placed
in the results. The effects of a drug on the growth or function of
cells may be relatively easy to see or to measure and should be
highly reproducible; effects on the central nervous system resulting
in changes in behaviour are likely to be a very different matter.
Drug development depends critically upon adequate testing and
this demands an appreciation of the problems of quantitative
pharmacology.

When a suitable pharmacological test has been devised the
successful development of new drugs depends upon finding what
changes in chemical structure lead to increased activity. It may be
possible from the relation between structure and activity to obtain
some information about how the drugs act, which in turn may
suggest new structures which are worth investigation. This part of

1



2 Quantitative Aspects of Chemical Pharmacology

the work is both a scientific problem in chemical (‘molecular’)
pharmacology and of great practical importance, because the
making and testing of many new compounds is expensive and takes
time. It is an intellectual challenge to know why activity alters with
chemical structure but the answers may also make it possible to
develop better drugs rapidly and economically.

Because drug development is impossible without proper
quantitative pharmacological tests the book begins with a
consideration of the problems of measuring biological activity.

Measuring the Effects of Drugs: ‘Responses’

If a drug produces an effect, it changes the properties of some of the
cells in an organism. Some effects may be actually visible but most
can only be detected with suitable apparatus. Many effects involve
physical or chemical changes which can be measured. These can be
classified into:

(i) changes in mechanical properties, e.g. in length, volume,
pressure, flow, rates of contraction;

(ii) changes in electrical properties, e.g. in the polarisation or
conductance of the cell membrane, potential changes due to
the activity of the heart or the central nervous system, changes
in rates of firing of neurones;

(iii) chemical changes, e.g. in the concentration of substances
involved in cell function, such as nervous transmission, or in
metabolism; this may include changes in the amounts of
enzymes involved in the synthesis or metabolism of such
substances.

Although the apparatus used to detect such effects may be
sophisticated, the response is usually the simplest type to consider,
because it can be measured and its size depends, within limits, on
the dose.

In some tests the effect cannot be measured, perhaps because it is
too complex, but it may be possible to devise some scoring system
which allows effects to be compared and arranged in order. This
often applies in tests for the effects of drugs on behaviour and in the
clinical assessment of the treatment of disease.

In other situations, such as toxicity tests, the responses can only
be ‘all-or-none’. An animal or a cell either lives or dies; a nerve cell
either conducts or it does not; a striated muscle cell either twitches
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or it does not. Responses can be made to appear graded by taking
groups of animals or cells or working with a nerve trunk or a
muscle bundle, rather than with single cells. Because individuals
differ in their sensitivity to a drug there will be a dose range within
which only a proportion will be affected, rather than all of them or
none at all. The response of a group in this situation is termed
quantal. The effect depends on the proportion of units responding
in an all-or-none fashion and it varies with the dose because of the
differences in the sensitivity of individual units. This is not the same
as where the performance of the unit is variable and the response is
termed ‘graded’. For example effects involving smooth muscle are
graded but those involving twitches from striated muscle are
quantal. Effects can be classified into:

(i) what can be measured and gives a graded response;
(ii) what can be scored and ranked;
(i11) what can be counted or depends on the proportion of units
responding in an all-or-none fashion.

The complexity of the apparatus used to detect the effect is no
guide to the complexity of a test. Elaborate equipment is usually
employed in order to simplify the response but this may also be
simplified by a suitable choice of test preparation. By working with
enzymes, single cells, or even pieces of tissue, rather than whole
animals it should be possible to simplify the nature of the response
by reducing the number of variables on which it depends. In
particular it should be possible to reduce, or even eliminate, the
complicating effects of time on the response. In a whole animal the
effect of a drug usually rises to a peak (depending on how it is
administered) and then declines. What happens at any particular
moment depends on:

(i) how the drug reaches its site of action;
(ii) what it does when it gets there;
(111) how it is removed.

These processes may well be quite unrelated to each other. In a test
on an isolated preparation with the drug added directly to the
bathing fluid it may be possible to see what a drug does without
the complications of transport and removal. In some situations it is
even possible to make measurements in conditions of equilibrium,
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or at least in a steady state, and so to measure effects at a much
more fundamental level. Such tests, however, are far removed from
the clinical situation and there is therefore a conflict between the
need to simplify to obtain reliable tests and the difficulty of
simplifying tests for properties which are clinically most interesting.
In fact a single type of test is not enough; all three processes,
transport, action and removal, need separate investigation if the
effects in the whole animal or man are to be understood.

Reproductibility of Graded Responses

The biggest problem in all drug testing is the way the response may
vary from one experiment to another. It is not enough that the
effect of a dose of one compound appears to be bigger than that of
a dose of another. It is necessary to ask whether there really is any
difference between the two results and to see if the difference is big
enough to refute the null hypothesis, that the results could all have
come from the same group.

If the test preparation produces a graded response and the
variation in response is due only to chance, individual responses
should be distributed normally about the true value. The
distribution is Gaussian and can be seen in Figure 1.1, where the
probability, P, of obtaining a result is plotted against its distance
from the mean, yu, expressed as a multiple, N, of the standard
deviation, o.

If the same dose has been tested n times and the individual
responses are ry,r,,rs,...,r,, the mean, ¥ =Sr/n where
Sr=r;+r;+r3+... +r,. An estimate of the variance of the
results, V = Sd?/(n—1), where Sd? is the sum of the squares of the
deviations from the mean, i.e. Sd*> = S(r —7)?. There is actually no
need to calculate the deviation of each individual result from the
mean because Sr? = S(f+d)? = ni? +2FSd+Sd?, but Sd =0, so
Sd? = Sr?> —ni? = Sr?—(Sr)?/n.

It is therefore only necessary to sum r and %, a simple operation
for a calculator, and the mean and the variance of the results can
be worked out. An estimate of the standard deviation of the results,
s = V12 The mean, 7, is an estimate of the true mean, u; the
standard deviation, s, is an estimate of the true standard deviation,
a.

For example if there were six responses: 15, 19, 21, 23, 18, 20,
the mean, 7 = 116/6 = 19.3; Sr? = 2280, Sd? = 2280—6(19.3)> =
2280—-2242.7=373:V =75and s = 2.7.
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and the integral between N = —1 and N = +1 encloses 68.2 % of the total area, i.e.
there are roughly two chances in three that a result will lie within the range u—o
and u+o. The integral between N = —2 and N = +2 encloses 95.59% of the total
area so there is only roughly one chance in twenty that a result will lie outside the
range u—20 and p+ 20, which represent the two ‘tails’ (shaded). For a single tail
there is only one chance in forty that a result will lie above u+1.960 and one in
forty that it will lie below y — 1.960.

If the individual results are distributed normally 68.2% of the
values should lie within the range p +o¢ and 95.59, should lie
within the range u +20. There is therefore less than one chance in
twenty (59%,) of obtaining a value outside this range. In the above
example two of the results (15, 23) lie outside the range 7 +s; none
lies outside the range # + 2s (but note that 7 is only an estimate of u
and s is only an estimate of g).

Our knowledge of the properties of the normal distribution
makes it possible to assess the chances of obtaining a particular
result, or group of results, and so perhaps to refute the null
hypothesis by showing that the chances that the results all come
from the same group are too small to be acceptable.
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If the example above had included a further result of 28, this
would differ from the existing mean by 28 —19.3 = 8.7 which is
more than 3s (3s = 8.1). If 7 were really the true mean, p, and s the
true standard deviation, o, the chances of obtaining such a result
would be less than 19,. It might be thought that it really was
different from the others and could be rejected but it is necessary to
look into the matter more closely. To test the null hypothesis
properly the result should have been included with the others in
calculating 7 and s; if it is, 7 = 20.6 and s = 4.1 and the result is
only distant from the mean by (28-20.6)/4.1 = 1.8s. Moreover, we
must make allowance for the fact that 7 is only an estimate of the
mean and s is only an estimate of the standard deviation. This can
be done by using ‘student’s ¢-deviate’ (Table 1.1). How good the
estimates are will depend on the number of results from which they
have been calculated or, more exactly the number of estimates of
scatter, called the number of degrees of freedom, which is (n—1).
(With a mean value and (n—1) results, the last result can be
calculated.) On the normal curve 959 of the results lie within the
range mean +1.96 times the standard deviation (95.59% within
+20), but if we are using estimates instead of true values, the
number must be replaced by a bigger value, ¢, whose size depends
on the number of degrees of freedom. In the example there are six
degrees of freedom and the value of ¢ is 2.45. The expectation is,
therefore, that 959% of the results lie within the range
20.6 +2.45x 4.1, i.e. between 10.6 and 30.6, so the extra result (28)
could well belong to the same group as the others. It may be
different from the others but the evidence is not convincing.

The choice of probability which is considered acceptable depends
upon the circumstances. If the probability of obtaining a result is
less than one in twenty (P < 0.05) it is often regarded as being
significantly different but there may be situations where it is
desirable to set the limit at one in one hundred (P < 0.01). On the
normal curve this includes all values in the range u +2.58 a; values
of t for this level of probability are included in Table 1.1.*

To compare different drugs it is clearly necessary to work with
groups of results: single results are of little value. For instance the
original six responses, with a mean of 19.3 and a standard deviation
of 2.7, might have been obtained with a dose of one drug and in the
same conditions a dose of another drug might have produced
responses which were: 25, 26, 32, 29, 25, 31 (mean = 28; s = 3.1).

* The statistical Tables 1.1 to 1.4 will be found at the end of this chapter, on pp. 36-8.
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Could these all belong to the same group? The mean values differ by
28 —19.3 = 8.7: at what level of probability would this difference be
significant?

If individual responses are distributed normally, the means of
groups of results will also be distributed normally though they
will be gathered much more closely around the true value. The
standard deviation of the distribution of means is estimated by the
standard error of a group of results, se = s/n'/2, The values for the
two sets of results are se; =2.7/6'?2 = 1.1 and se, = 3.1/6'2 =1.3.
If two means have true standard deviations ¢, and o,, the
standard deviation of the difference between two means is:

2 2\1/2
gy 03
_+_

n; Ny

where n; and n, are the numbers of responses from which the
means are calculated. An estimate of this standard deviation is:

(5% 5%)1/2 s 2\1/2 _ 2 231/2 _

= = (se; +se3)* = (1.1* + 135y =17

ng Ny

The difference between the means is therefore 8.7/1.7 = 5.1 times
the estimate of the standard deviation. There are five estimates of
scatter from each group, making ten degrees of freedom in all. The
corresponding value of t with P = 0.05 is 2.23 and with P = 0.01, ¢
is 3.17. The difference is therefore more than would be expected
even at the ‘1 9’ level of probability.

The example given above shows the value of working with
groups of responses. If only three responses were obtained in the
second group, 25, 25, 26, the difference between the means is
25.3—19.3 = 6.0. The standard error of the second group is 0.3 and
the estimate of the standard deviation of the difference is
(1.124-0.3%)Y/2 = 1.15 and the difference between the means is
6.0/1.15 = 5.2 times the estimate of the standard deviation. With
seven degrees of freedom the value of ¢ with P = 0.05 is 2.36 and
with P =0.01 ¢ is 3.50 so the difference is significant even at the
more rigorous level. Although the difference between the means is
less than with all six responses in the second group, the standard
error is now very small. Indeed the scatter appears suspiciously
different in the two groups, though the experiment is poorly
designed for testing this because there are only three responses in
the second group compared with six in the first.

To investigate the matter, an analysis of variance can be made.
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For two groups, size n; and n,, with means 7, and 7, and an
overall mean 7,

S(r—7)? = S(r, — 7y )2 +S(r2—F2)2 +ny(Fy —F)2 4+ ny(7, — 7).

(These can easily be calculated from values of Sr and Sr?, see
above.) The first two terms estimate the variance within the
groups; the last two represent the variance between the two means.
If they are not very different 7, 7, and 7 will be close together and
these last two terms will be small. For the two groups, 15, 19, 21,
23, 18, 20 and 25, 25, 26, the actual figures are:

110.1 = 37.3+0.7+6(19.3—21.3)* + 3(25.3 — 21.3)?
=38.1+24+48 (=110.1)

This information can conveniently be arranged:

s df |4

Between groups 72.0 1 72.0
Within group 1 37.3 5 7.46
group 2 0.7 2 0.35
Total 110.1 8 13.76

(where ss indicates the sums of the squares of the deviations, df is
the number of degrees of freedom and V is the estimate of the
variance. Note that for the variance between two means there is
only one degree of freedom).

The variance within the first group is much bigger than the
variance within the second and the ratio is 7.48/0.35 = 21.4. It is
possible to calculate the limiting value of this variance ratio, F,
consistent with both sets of values having the same distribution.
With P = 0.05, and the greater estimate based on five degrees of
freedom and the lesser estimate based on two degrees of freedom,
the limiting value of F is 39.3 (Table 1.2A), so it is not possible to
confirm the suspicion. Table 1.2A is based on a two-tailed
distribution, where no assumptions are made about which may be
the greater variance. If it is known from the experimental plan that
one should be bigger than the other, the test involves a one-tailed
distribution (Table 1.2B) and the ratio would be significant with
P = 0.05 (F is 19.3). This is not known, however, but even so it is
doubtful whether we can assume that the variances are the same
and can be pooled and used in a t-test.

If the group of three results with the second compound is
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replaced by the original group of six values, 25, 26, 32, 29, 25, 31,
the overall mean 7 = 23.7, 7, = 19.3, 7, = 28.0, and the sums of
squares of the deviations (ss), number of degrees of freedom (df ),
estimates of the variance (V') and the variance ratios (F) are:

ss df 14 F
First group 37.3 5 7.5 3.76
Second group 48.0 5 9.6 2.95
Total 310.5 11 28.2

The values of F indicate that the variance in either of the two
groups cannot be distinguished from that of all the results taken
together. The total ‘within sample’ variance is (37.3+48.0)/10 = 8.5.
The ‘between sample’ variance is n, (7, —7)* +n, (7, — ) divided by
the number of degrees of freedom, which is only 1 because we are
considering the means of the two groups, so this is
6 x4.3%2 +6x4.32 = 221.9. We have therefore:

af F
Between sample variance 2219 1
. . 2219
Within sample variance 8.5 10 o5 26.

With one degree of freedom for the greater estimate and ten
degrees of freedom for the lesser estimate the limiting value of F,
P = 0.05is 6.94 (Table 1.2A) so the analysis of variance establishes
that the difference between the means is greater than would be
expected on the null hypothesis at this level of probability. If it is
known that the results in one group should be bigger than those in
the other, for instance if they were obtained with the same
compound but with a larger dose, the test involves a one-tailed
distribution and the variance ratio is significant even with P = 0.01
(Table 1.2B).

An analysis of variance would be expected to confirm the
findings of a t-test but it is more rigorous, because it checks the
assumptions that the sample variance is indistinguishable in both
groups.

ExampLE 1:1.

Convince yourself that Sd* = Sr? —ni* by checking, calculating
the values for r = 3,4, 5, 6, 7.
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ExAamMPLE 1:2.

The following estimates of log affinity constant (see page 158)
for acetylcholine receptors in the guinea-pig ileum were

obtained:
PhZCHC(I)

J:ﬁj \Euj
Ph,CHCOO™ N e
4 Me Me Me Me
I IT

6.974 7.090

6.984 7.083

6.999 7.093

6.986 7.072

6.985 7117

7.004 7.107

7.003

Is there any evidence that the compounds have different
affinities?

(From results of Abramson, PhD thesis, Edinburgh University,
1964.)

Ranked Responses

If the responses are not graded but can only be ranked, there is no
reason to assume that they will be normally distributed. For
instance, the steps in the scale used for scoring may be unequal. If
the scores for two drugs were respectively 17, 18, 20, 21, 24 and
20, 23, 25, 26, 28, the values for the middle member of each
set, called the median, are 20 and 25: 609, of the scores lie
between 18 and 21 for the first group and between 23 and 26 for the
second. The interquartile range, which gives the limits within which
half the results lie is sometimes quoted as an indication of the
scatter, but these particular results cannot satisfactorily be divided
into quarters.

Could these results all belong to the same group? If they are
arranged in rank order with the largest =1, the values become: 10,



