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Foreword

7

This book is meant as a text for a first year graduate course in analysis.
Any standard course in undergraduate analysis will constitute sufficient
preparation for its understanding, for instance my Undergraduate Analysis. 1
assume that the reader is acquainted with notions of uniform convergence and
the like.

In a sense, the subject matter covers the same topics as elementary
calculus, viz. linear algebra, differentiation and integration. This time, how-
ever, these subiects are treated in a manner suitable for the training of
professionals, i.e. people who will use the tools in further investigations, be it in
mathematics, or physics, or what have you.

In the first part, we begin with point set topology, essential for all analysis,
and we cover the most important results.

I am selective here, since this part is regarded as a tool, especially Chapters
1 and 2. Many results are easy, and are less essential than those in the text.
They have been given in exercises, which are designed to acquire facility in
routine techniques and to give flexibility for those who want to cover some of
them at greater length. The point set topology simply deals with the basic
notions of continuity, open and closed sets, connectedness, compactness, and
continuous functions. The chapter concerning continuous functions on com-
pact sets properly emphasizes results which already mix analysis and uniform
convergence with the language of point set topology.

The differential calculus is done because at best. most people will only be
acquainted with it only in Euclidean space, and incompletely at that. More
importantly, the calculus in Banach spaces has acquired considerable impor-
tance in the last two decades, because of many applications like Morse theory,
the calculus of variations, and the Nash-Moser implicit mapping theorem,
which lies even further in this direction since one has to deal with more general
spaces than Banach spaces. These results pertain to the geometry of function
spaces. Cf. the exercises of Chapter 6 for simpler applications.

Next, we cover some functional analysis. The purpose here is twofold. We
place the linear algebra in an infinite dimensional setting where continuity
assumptions are made on the linear maps, and we show how one can
“linearize” a problem by taking derivatives, again in a setting where the theory
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can be ultimately applied to functicn spaces. Chapters 4, 7, 9, and 10, which
include two major spectral theorems of analysis, show how we can extend to
the infinite dimensional case certain results of finite dimensional linear alge-
bra. The compact and Fredholm operators lately have been receiving renewed
attention because of the applications to integral operators and partial differen-
tial elliptic operators (e.g. in papers of Atiyah-Singer and Atiyah-Bott).

For this second edition, I have added the spectral theorem for unbounded
self-adjoint operators. I learned it in connection with the spectral decomposi-
tion of the Laplacian on the upper half plane. The bibliography contains
references to this literature for those interested.

The fourth part begins with the development of the integral. The fashion
has been to emphasize positivity and ordering properties (increasing and
decreasing sequences). I find this excessive. The treatment given here attempts
to give a proper balance between L'-convergence and positivity.

The chapters on applications of integration and distribuiions provide
concrete examples and choices for leading the course in other directions, at the
taste of the lecturer. There are many very good books in intermediate analysis,
and interesting research papers, which can be read immediately after the
present course. A partial list is given in the bibliography. 'n fact, the de-
termination of the material included in this Real Analysis has been greatly
motivated by the existence of these papers and books, and by the need to
provide the necessary background for them.

A number of examples are given in the text (for instance, the Laplace
operator in Chapter 8), but many interesting examples are also given in the
exercises (for instance, explicit formulas for approximations whose existence
one knows abstractly by the Weierstrass-Stone theorem; integral operators of
various kinds; etc). The exercises should be viewed as an integral part of the
book. Note that Chapter 15, giving the spectral measure, can be viewed as
providing an example for many notions which have been discussed previously:
operators in Hilbert space, measures, and convolutions. At the same time,
these results lead directly into the real analysis of the working mathematician.

For some courses, it will be best to omit a lot of the functional analysis
and to cover most of the integration theory. For instance, a course could cover
Chapters 2, 3, 4 and §1, §2 of Chapter 7. After that, one could go immediately
to integration theory in Chapters 11, 12, and 13. This ordering could make up
a single course, even a one semester course if one omits some of the more
technical material. Chapter 14 on locally compact spaces would then give a
natural continuation. Its purpose is to show how one derives a measure from a
functional on the space of continuous functions with compact support. After
that, one might cover Chapter 17 on distributions, showing how restrictions on
functionals by means of differential operatdrs give rise to a ubiquitous notion
in analysis, and also give the flavor of Euclidean space superimposed on the
more general measure and functional theory.
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I find it appropriate to introduce students to differentiable manifolds
during this first year graduate analysis course, not only because these objects
are of interest to differential geometers or differential topologists, but because
global analysis on manifolds has come into its own, both in its integral and
differential aspects. It is therefore desirable to integrate manifolds in analysis
courses, and I have done this in the last part, which may also be viewed as
providing a good application of integration theory.

As usual, I have avoided as far as possible building long chains of logical
interdependence, and have made chapters as logically independent as possitle,
so that if one wishes to cover integration early, for instance, this can be do e
without difficulty simply by skipping suitable chapters. My personal taste f
the moment was rather to deal with continuous linear algebra first, at some
length. I think under any circumstances, a minimum of this “continuous linear
algebra” should be done before any other topics (e.g. introducing Banach and
Hilbert spaces, and proving the existence of an orthogonal complement in
Hilbert space). This gives a language and a mechanism which make everything
easier afterward, and is in line with one of the main trends of mathematics,
which is to linearize whenever possible.

SERGE LANG
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CHAPTER 1

Sets

§1. SOME BASIC TERMINOLOGY

We assume that the reader understands the meaning of the word “set”,
and in this chapter, summarize briefly the basic properties”of sets and
operations between sets. We denote the empty set by @. A subset S’ of S is
said to be proper if S” # S. We write S’ C S or S D S’ to denote the fact that
S’ is a subset of S.

Let S, T be sets. A mapping f: T — S is an association which to each
element x € T associates an element of S, denoted by f(x), and called the
value of f at x, or the image of x under f. If 7" is a subset of 7, we denote by
f(T’) the subset of S consisting of all elements f(x) for x € T. The association
of f(x) to x is denoted by the special arrow

x - f(x).

Let X, Y be sets. A map f: X — Y is said to be injective if for all x, x’ € X
with x # x’ we have f(x) # f(x’). We say that f is surjective if f(X) =Y, i.e.
if the image of fis all of Y. We say that f is bijective if it is both injective and
surjective. As usual, one should index a map f by its set of arrival and set of
departure to have absolutely correct notation, but this is too clumsy, and the
context is supposed to make it clear what these sets are. For instance, let R
denote the real numbers, and R’ the real numbers > 0. The map

fR:R->R
given by x — x? is not surjective, but the map
fR:R—> R

given by the same formula is surjective.
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If f: X - Y is a map and S a subset of X, we denote by
f18

the restriction of f to S, is the map f viewed as a map defined only on S. For
instance, if f: R = R’ is the map x — x?, then f is not injective, but fIR is
injective.

A composite of injective maps is injective, and a composite of surjective
maps is surjective. Hence a composite of bijective maps is bijective.

We denote by Q, Z the sets of rational numbers and integers respectively.
We denote by Z™ the set of positive integers (integers > 0), and similarly by
R the set of positive reals. We denote by N the set of natural numbers
(integers > 0), and by C the complex numbers. A mapping into R or C will be
called a function.

Let S and I be sets. By a familxof elements of S, indexed by /, one means
simply a map f: I — S. However, when we speak of a family, we write f(i) as
fi» and also use the notation { f;},., to denote the family.

Example 1. Let S be the set consisting of the single element 3. Let
I ={1,..., n) be the set of integers from 1 to n. A family of elements of S,
indexed by /I, can then be written {a;),., , with each a;, = 3. Note that a
family is different from a subset. The same element of S may receive distinct
indices.

A family of elements of a set S indexed by positive integers, or nonnega-
tive integers, is also called a sequence.

Example 2. A sequence of real tumbers is written frequently in the form
(¥ Xpee) of (X e

and stands for the map f: Z™ — R such that f(i) = x,. As before, note that a
sequence can have all its elements equal to each other, that is

(1,1,1,...)

is a sequence of integers, with x, = 1 foreachi € Z™ .

We define a family of sets indexed by a set / in the same manner, that is, a
family of sets indexed by I is an assigniment

i— S,

which to each i € I associates a set S,. The sets S; may or may not have
elements in common, and it is conceivable that they may all be.equal. As
before, we write the family {S,},<;.

We can define the intersection and union of families of sets, just as for the
intersection and union of a finite number of sets. Thus, if {S,},c, is a family of
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sets, we define the intersection of this family to be the set

s,

el

consisting of all elements x which lie in all S;. We define the union

Us,

el

to be the set consisting of all x such that x lies in some S,.

If S, S are sets, we define S X S’ to be the set of all pairs (x, y) with
x € S and y € S’. We can define finite products in a similar way. If S,, S,,...
is a sequence of sets, we define the product

to be the set of all sequences (x,, x,,...) with x;, € S,. Similarly, if 7 is an
indexing set, and (S,),c,; a family of sets, we define the product

I[Ts
iel
to be the set of all families {x,);c, with x; € S,.
Let X, Y, Z be sets. We have formula

(XUuY)XZ=(XXZ)Uu(YX2Z).

To prove this, let (w,z) € (XU Y)X Z withwe€ XU Y and z € Z. Then
we Xorwe Y. Sayw € X. Then (w, z) € X X Z. Thus

(XUY)XZc(XXZ)u(YXx2ZzZ).

Conversely, X X Z is contained in (X U Y) X Z and so is Y X Z. Hence their
union is contained in (X U Y) X Z, thereby proving our assertion.

We say that two sets X, Y are disjoint if their intersection is empty. We say
that a union X U Y is disjoint if X and Y are disjoint. Note that if X, Y are
disjoint, then (X X Z) and (Y X Z) are disjoint.

We can take products with arbitrary families. For instance, if { X;},c; is a
family of sets, then

(Ux)xz=U (xx2)

iel el



