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R. S. ,and the Edinburgh University Press for their cooperation and

invaluable assistance in the production of the book.
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The purpose of this book is to give an account of the methods
employed by Alfred Young in his reduction of the symmetric group
and to describe the more important results achieved by him.

The problem which first attracted Young’s attention and which
initiated the theory developed by him was that of solving certain
substitutional equations which arose in his study of the Theory of
Invariants. Although this initial problem was never far from his
mind, his researches led him to study problems whose significance
was deeper than he originally suspected. The keystone of these was
the reduction of the symmetric group to its irreducible representa-
tions and the presentation of these representations in an explicit
form. His published researches on these subjects, extending from
1900 to 1935, reveal some interesting facts. Most remarkable per-
haps is the gap of twenty-five years between the second paper in
1902 and the third in 1927. In the first two papers Young had in-
troduced the concept of a tableau which is so fundamental in the
subsequent theory and had achieved some interesting results. It
seems fairly certain that this brilliant inspiration was arrived at by a
close study of the Gorder-Capelli series in the Theory of Invariants.
This is borne out by the fact that the first use he made of his newly
forged tool was its application to the Gordan-Capelli series.

In the introduction to his third paper Young writes: “ When
writing the two former papers I suffered from the disadvantage of
being unacquainted with the closely related researches of the late
Prof. Frobenius, published in the Berlin Sitzungsberichte, and be-
ginning with ‘ Ueber Gruppencharaktere’ , 1896 ; a lucid and more
elementary exposition of the main features of Frobenius’s theory of
group characters was given by Schur”. It is uncertain at what date
Young’s attention was drawn to the work of Frobenius and Schur,
but it is certain that their papers made a great impression on him
and spurred him on to develop his own approach to the subject. To
enable him to assimilate the papers of Frobenius and Schur he un-
dertook a study of the German language. When one remembers in
addition that Young was not a professional mathematician but a
country clergyman with numerous clerical duties, the gap of twen-
ty-five years between his second and third papers is not so surpris-

ing.
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Adopting the point of view of abstract algebra, Thrall derives Young’s orthogonal
representation directly and thereby eliminates a great mass of elaborate detail which
Young found necessary in constructing the orthogonal representation from the natural
one.

The discovers of Frobenius and Schur are not without significance in the theory
under consideration. Indeed their results embody many of those of Young. The two
theories may be regarded as parallel attacks on the same problem, but in this book
the emphasis will be laid on the calculus of tableaux as applied to the symmetric
group, and this particular aspect of the subject is peculiar to Young’s work and to
that of von Neumann, Robinson and Thrall.

Likewise there have been several successful attempts, notably those of Weyl,
Murnaghan and D. E. Littlewood, to relate Young’s work to other branches of Mod-
ern Algebra. These, however, have already been expounded by their several authors
and will not be enlarged upon here.

In this book it was considered desirable to expound the subject in terms of
Young’s mathematical language because in this way the theory can be studied by a
reader possessing no previous knowledge of the subject apart from those portions of
the Theory of Groups and the Theory of Matrices which are familiar to all mathemati-
clans, and because in this way only can the individuality and genius of Young be
properly recognised. Nevertheless, the reader who is already familiar with Young’s
writings will observe that the presentation here given varies considerably from that of
Young. In some cases the order of development has been changed, and in conse-
quence of this, many of the proofs given are new. It is hoped that these changes will
contribute to the lucidity and beauty of the underlying theory. It will therefore be
understood that the references in the text to Young’s work do not necessarily imply
that the proof given is due to Young. While this is so in some cases, in others the
reference is quoted only to show that the result in question was also obtained in
whole or in part by Young. The references quoted in the text are given in an a-
bridged form. The works cited are given in full in the Bibliography on page 109.
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THE CALCULUS OF PERMUTATIONS

I 193dey)

Argument. The n! possible permutations of n letters occupy a
place of basic importance throughout this book. In this first chap-
ter we shall describe some of their more interesting properties and
shall introduce certain notations which will facilitate our investiga-
tions in later chapters. Most readers will find that much of this
chapter is already familiar to them but they should nevertheless
pay particular attention to the notations employed, especially in
§6 and §7.

§ 1 Permutations

It is well known that there are n! different permutations
which can be made on n letters. We shall call these letters z, -,
z, ,but in most cases it will be more convenient to denote them by
their suffixes only. To avoid ambiguity we shall use a special fount
of type for this purpose and write z,, -+, z, simply as 1, -+, n.
Thus

() (1.1)

i] ’ iz st 5':
where i, ,---,i, denote the letters 1,-+-,n in some order, denotes
the permutation which changes the letter 1 into the letter i, and so

on. There is no particular reason why the columns of this permuta-

tion should be written in any special order. The same permutation

might be denoted by
2,1,,n
(iz vil T vin)



or, more generally, by
ky ke, ook,
(ik, vikza"',ik,,)
where k, -+ ,k, are the letters 1,-+-,n in some order. Greek letters o, 7, will fre-
quently be employed to denote permutations in cases where the above more precise
notation is unnecessary. In particular we shall write
_(1,2,4,n
8=(1’2,...,n)
throughout this book, where £ denotes the identical permutation.

In Group Theory these permutations are considered as elements which have an
independent existence, but for many of our purposes they must be thought of as op-
erators which are applicable to functions of the n letters. Thus, when the permuta-
tion (1.1) is applied to a function F(z,,--*,z,), a function F(z, ,---,z, ) is ob-
tained which is in general different from F(z,,:-+,z,). This is expressed by the for-
mula

(575 P ) =P ) (1.2)
For this reason we shall write the result of operation on F first with the permutation
o, and then with the permutation o, as 0,0 F and not as o, 0, F. It is easily proved
that the effect of operating successively with two permutations is equivalent to operat-
ing with a single permutation, which we may call the product of the other two. In
other words, 0,0, is itself a permutation o, namely, that permutation which re-
sults from first performing the permutation o, , and then performing o,. It should be
borne in mind that in Group Theory, where the permutations are not thought of as
operators acting on functions, the product which we now denote by o, is more u-
sually written o, 0,. This distinction is an important one since in general permuta-
tions are non-commutative with respect to multiplication. The truth of this is evident

from the following illustration
1,2,3y71,2,3 1,23
(2,1 ,3)(1,3,2) - (2,3,1)
1,2,3y(1,2,3y (1,23
(1,3,2 (2,1 ,3) ‘(3,1 ,2)
We shall see in a moment that every permutation o possesses an inverse o ~'.
Since two permutations ¢, and o, do not necessarily commute, we must be careful to
write

(0'10'2) o =0'2-10'1 -

K-



Substitutionel  Analysis

as is usual in all non-commutative algebra.

§2 The Symmetric Group ./

From time to time it will be necessary to quote certain standard results from the
more elementary parts of the theory of finite groups. Such results are very well
known and appear in all the usual text-books. This being so, it would seem to be
superfluous to include the proofs of these results in this book. An exception will nev-
ertheless be made in the case of theorems and formulae which are specifically con-
cerned with the n! permutations of the symmetric group. In such cases there will be
no objection to expressing the proofs concerned in a concise form.

Theorem 1 The n! permutations of n letters form a group.

Proof (i) The product of any two permutations is a permutation.

(ii) The identity permutaiton

1,2,-,n
-

which leaves every letter unaltered is the unit element of the group.

il 9“.’in 1,"',"1« l,-"!n
= =g
(1,"',")(’:1""":") (1,"',".)

(ii1) Since

. 1 ’ ,n

every permutation ( ) ) )
ll ’ CRRY ’ln
. Lyt

has an inverse ( )
1,---,n

(iv) It can readily be verified that the associative law holds.

The n! permutations of n letters therefore satisfy the four group postulates and
consequently form a group. This group which is called the symmetric group of order
n! is usually denoted by ..

Theorem 2 If o and 7 be any two permutations the product oro "' is that per-
mutation which is obtained by operating® on 1 with o

Proof Let
(1"","') (1,'","' (Jl’ o )
T=0 . L] O=1 . i
]I””’Jﬂ Ll’u"ln k

(@ Operating in the sense of (1,2).




Then

and
L et N[ Len [ iy, i
. =(kk)(11)(1n)=(kk)
Clearly this last permutation can be obtained from 7 by operating on it with o.
The significance of this theorem, which is of fundamental importance in our
subsequent work, can perhaps best be understood by comparing the relations
1,2,3v¢1,2,3%72,1,3 2,1,3
(2,1,3) 2,3,1)(1,2,3)=(1,3,2)
1,2,3
(2,1 ’3)1?(7-1 V2 ,2) =F(2,2,,2)

§3 Cycles and Transpositions

The most fruitful way of investigating permutations is by expressing them as

products of cycles. By a cycle is meant a permutation of the type

Uoabas ™ s by sbpabrat s " sin

AN ARSI S A SRR 3 )
which leaves the letters i, ,,,*+,i, unaltered but which permutes the letters i, ,+**,i,
cyclically. The number r of letters permuted cyclically is called the order of the cy-
cle. Such a cycle may be economically written

iy 4o si,)

It might also be written (i,,:**,i,,i,) ,or again (i,,i,,***,i,_,), or in fact in r dif-
ferent ways in all.

The notation just introduced has the advantage that only those letters which are
affected by the cycle are displayed. It is therefore clear at a glance which letters are
unaffected. Thus the cycle (2,1,4)leaves the letter 3 unaltered. A set of cycles no
two of which affect the same letter are said to be independent. It is an elementary
fact of considerable importance that independent cycles commute with one another.
This must be so since in any product of independent cycles no letter is affected more
than once.

It follows from our definition that the rth power of a cycle of order r is always

R #2547
4
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the unit element; thus if & = (i,,**,i,), then ¢’ =& and ¢ ~' =¢~'. The inverse
of a cycle of order r is a cycle of order r, namely that which permutes the letters
i,,***,i, cyclically in the reverse order. These properties will be clarified by the fol-
lowing illustration

l,2,---,r,r+1,--°,n)

= 192!".9 =
o=t ") (2,3,-'-,1,r+1,-~~,n

02=(1,2;u,g2=(1’2f"’ﬂr+1,"un)
3,4,-,2,r+1,-,n
0'-1=(l,2,---,r)"'.___(1’2""”'r’+1,"',n )
r,],~,r=1,r+1,--,n
=(r,r=1,-,1)
o' =(1,2,-,r)' =(1’2’m’r”"'l,“',n)
1,2,"',r,r+1,...,n
=g

Every permutation can be expressed as a product of independent cycles. The

method of doing so is typified by the following example

1,2,3,4,5,6,7) (1,3,2,6,4,7,5)

3,6,2,7,5,1,4) \3,2,6,1,7,4,5
1,3,2,6,4,7,5\/4,7,1,3,2,6,5\/5,1,3,2,6,4,7
_(3,2,6.1,4,7,5)(7,4,1,3,2,6,5)(5,1,3.2,6,4,7)

=(1,3,2,6)(4,7)(5)
Since any cycle of order unity is merely the identity permutation £ we may omit such
cycles from any product. The permutation illustrated above is most concisely written
(1,3,2,6)(4,7).

Using this notation the 3! permutations of .% are

1,2,3 1,2,3 1,2.3

( )a ( )=(1,2,3>, ( )=<3,2,1>

1,2,3 2,3,1 3,1,2

1,2,3 1,2,3 1,2,3
=(2,3), =(3,1), =1(1,2

(1,3,2) ( ) (3,2,1) 3.1) (2,1,3) (1.2)

The group Table 1 which tabulates all products o7 of this group is given below. The

elements g are in the column on the left and the elements 7 lie in the row at the

top.



Table 1

7 e (1,2,3)(3,2,1) (2,3) (3,1) (1,2)
& e |(1,2,3)((3,2,1)] (2,3) | (3,1) | (1,2)

(1,2,3)7'=(3,2,1) |(3,2,1)] & |(1,2,3)|(3,1) | (1,2) | (2,3)

(3,2,1) ' =(1,2,3) [(1,2,3)((3,2,1)] & |(1,2)](2,3)]| (3,1)
(2,3) '=(2,3) (2,3) | (3,1) | (1,2) | & [(1,2,3)[(3,2,1)
(3,1) '=(3,1) (3,1) | (1,2) | (2,3) [(3,2,1)] & |(1,2,3)
(1,2) '=(1,2) (1,2) | (2,3) | (3,1) [(1,2,3)[(3,2,1)] &

A cycle of order two is called a transposition and is evidently its own inverse. It
can be readily verified that
(1,2,-,r)=(1,r)(1,r=1)--+(1,3)(1,2)
=(1,2)(2,3)(r=2)(r=-1)(r-1,r)
Many other such resolutions are possible; e. g.
(1,2,--,r) =(2,3,--,r,1) =(2,1)(2,r)-+(2,3)
but it must be remembered that transpositions like cycles do not commute if they
have letters in common. It follows that any permutation, being a product of cycles,
can always be expressed as a product of transpositions. Thus
1,2,3,4,5,6,7
(3,6,2,7,5,1 4

We are now in a position to prove the following result.

=(1,3,2,6)(4,7) =(1,3)(3,2)(2,6)(4,7)

Theorem 3  Every permutation can be expressed as a product of transpositions
of the form (k—1, k) where k —1 and k are two consecutive letters.

Proof Since we have already expressed any permutation as a product of trans-
positions, it remains to show that any transposition (i,j) can be expressed as a
product of transpositions of the form (£ -1, k). From theorem 2( §2) it follows
that

(i,j) =(1,i) (1,/)(1,i)
and that
(1,i) =(¢,---,3,2)(1,2)(2,3,--,i)
Also, we have seen that
(¢,-+,3,2) =(i,i—-1)---(4,3)(3,2)
(2,3,-,1) =(2,3)(3,4) - (i -1,1)

A combination of these formulae yields the desired result.

K% 5 #r
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For example
(2,4)=(1,2)(1,4)(1,2) =(1,2)(3,4)(2,3)(1,2)(2,3)(3,4)(1,2)

§4 Odd and Even Permutations

When any permutation ¢ is applied to the alternant

A= H (zj -z;)

>
the value of this expression remains ur;altered apart from sign. Now for any given o
we must have either 0A = + A or else dA = - A. If oA = + A we call o an even
permutation, whereas if A = — A we call o an odd permutation. Clearly every
transposition is an odd permutation, for when it is applied to A it changes the sign of
an odd number of factors. It follows from this that the product of an even number of
transpositions is an even permutation and that the product of an odd number of trans-
positions is an odd permutation. Although in general any permutation can be ex-
pressed in a variety of ways as the product of transpositions, it is clear from the fore-
going that each such way involves an even number of transpositions if the permuta-
tion be an even one, but an odd number of transpositions if the permutation be odd.
In illustration we remark that ¢, (1,2,3),(1,2)(3,4) are even permutations and
that (1,2),(1,2,3,4) are odd permutations.
Associated with each permutation o we now define a number .%, with the prop-

erties

¢, = +1,if o is an even permutation

o

This notation will prove very useful in subsequent chapters. It is already familiar in

-1,if o is an odd permutation

the theory of determinants; e. g.

xl...x

n
= E U'(xn”',t..)
o
toeot

§5 Classes of Permutations

The concept of a class of elements is a very important one in the Theory of
Groups and we shall make some use of it at a later stage in this book. For our pur-

poses it will suffice to consider the case of the symmetric group .7 only. Two permu-



tations T, and 7, of .7 are said to belong to the same class if it is possible to find a
permutation ¢ of . such than
oT\.0 =T,
Theorem 2( § 2) tells us that this is possible if and only if 7, can be obtained by
operating on 7, with some permutation . This means that 7, and 7, must be built up
of the same number of independent cycles and that the orders of these component cy-
cles are the same in each case although the arrangement of the letters in the cycles
will be different when 7, and 7, are distinct. In other words, all those permutations
which are the products of independent cycles of orders a;, ,***,a, form a class of ./
and no other permutations of ., belong to this class. In particular, .% has three
classes, namely
e; (1,2,3),(3,2,1); (2,3),(3,1),(1,2)

Since we have shown that the inverse of a cycle of order r is a cycle of order r, it is
patent that o and ™' must always belong to the same class of ... A corresponding
statement is not true for every finite group.

If 7, is expressible as the product of r transpositions, then or,0 ' is also ex-
pressible as the product of r transpositions. It follows from this that all the permuta-
tions of a given class are either all odd permutations or else are all even permuta-

tions.
§ 6 Substitutional Expressions

The substitutional expressions which we now introduce can be viewed from two
angles. Although the permutations o, 7 considered as elements of the group %7 admit
of only one law of combination, namely multiplication, yielding products such as o1
and 7o, we can attach a meaning to ¢ +r if we regard the permutations as operators
If oF=F,, 7F=F_, we define

o +7 to be that operation which yields the function F, + F_ when it is applied to the

acting on a function F of the n letters z, ,--+,z

n*

function F. In view of this definition we can extend the above notation and write
F,+F =F

We can generalise the foregoing idea by attaching numerical coefficients to the per-

ag+T

mutations. The general substitutional expression has the form
.X=A18 +A.20'2 b +/\,,!0',,!
where £,0,,**,0,, are the n! distinct permutations of ., and where A,,-+-,A,, are

numerical coefficients. X is defined as that operation which when applied to any

KD
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function F yields F,, where
FysAMF+0,F, ++A,F,
and where F, =0 ;F. These substitutional expressions form the main topic of this
book.
To take a more abstract point of view we may define the substitutional expres-
sions X as hyper-complex numbers constructed from the permutations o; of .7 as

units. The resulting algebra is sometimes called the group algebra of ~. Any two

substitutional expressions X = Z A,0;and Y= Z i, 0; have a sum
X + YE 2 (Ad,‘ +“¢,‘)a-i

and a product
XY= 2 Ao 00,
If we write 0,0, =0, then g; =0'['a'l:; thus we may also write
XY= Z Agfog-15,0
so that not only the sum X + Y but als:the product XY is a linear combination of the

permutations ¢;. As such it is clear that the sum and the product of two substitution-
al expressions are also substitutional expressions. As illustrations of this the reader
may verify, with the help of the group table for 4 ( §3), that if

X=¢-2(1,2), Y=3(1,2,3)+(1,2)
then

X+Y=£-(1,2) +3(1,2,3)

XY=-2+(1,2) -6(2,3) +3(1,2,3)

YX=-2¢+(1,2) -6(3,1) +3(1,2,3)

§7 The Positive and Negative Symmetric Groups on r Letters

Certain types of substitutional expressions are of frequent occurrence and as
such deserve a special notation. The set of all permutations o obtainable by permu-
ting the letters i, ,+-+,i, among themselves constitute a symmetric group of order r!.
To be more precise, we shall call it the positive symmetric group on the r letters
i;,°**,i,. The sum of all the elements of this positive symmetric group will be deno-
ted by

{ il ,o ir f

and we can denote the positive symmetric group itself by



B, i}

It is easily proved that the substitutional expressions {_ o, where o ranges over
the permutations of G{i,,*-,i,| , also constitute a group which is simply isomorphic
with &} i, ,+--,i, |. This group is called the negative symmetric group on the r letters
{i,,°++,i,} and will be denoted by

Adyyeenyi !
The sum of its elements can be written
(i, ,i )

From the abstract point of view £}i,,:-,i,| and &i,,+,i,} ' are merely different
representations of .. The elements of these representations are substitutional ex-
pressions and in the general case {i,,**-,i.| and {i,,*:-,i,}  are distinct elements
of the group algebra. For example

{1,2,3} =¢+(1,2,3) +(3,2,1) +(2,3) +(3,1) +(1,2)

{1,2,3}"'=¢+(1,2,3) +(3,2,1) -(2,3) -(3,1) - (1,2)

It is a fundamental fact in the Theory of Groups that when each element of the
group is pre-or post-multiplied by some specified element of the group, the resulting
products comprise all the elements of the group, each occurring once only. It fellows
from this that if 77 be any element of & i, ,-*+,i, | and » = ({,w) be any element of
iy, }1", then

,7.“1 ,"-,i,l = “1 ,---,i,}'rr: li[ ,---,i,}

vii, ,...’M ' = iil ,'",i,} 'y = “1 ,"',i,} !
Here it is to be observed that if the letters i, ,-++,i, all belong to the set 1,:++ ,n, the
r is necessarily and element of %,. So is v if it be an even element, but if it is odd
then it is - p that is an element of ..

If .# is a sub-group of order m of the group ¥1i,,+--,i |, then it is known
from the Theory of Groups that elements 7, ,**,r,,,, of $1i,,***,i,| can be found
such that the elements of

o F gy H
include all those of &}i,,-*-,i,} once each and no others. Now if i,, i, be two let-
ters of the set i, ,+:+,i,, then & i, *,i,|is a sub-frow of &4 i, ,---,i |. If follows
that elements 7, ,***,,,,, can be found such that
i ,oouil =(tmy+ ) Ly siid
This factor {i,,i,} is equal to & + (i, ,i,). It may be written either on the left or the
right of the other factor (¢ + 7, + **- +,,,,) as desired. A very similar argument

would show that {i,,i,|’ has a factor {i,,i,}" or & - (i,,7,). This factor can also

RS
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