

Handbook of Geometric Analysis (vol. II)

几何分析手册(第11卷)

Editors: Lizhen Ji · Peter Li · Richard Schoen · Leon Simon

ALM 13Advanced Lectures in Mathematics

Handbook of Geometric Analysis (vol. II)

几何分析手册 (第II卷)
Jihe Fenxi Shouce (Di II Juan)

Editors: Lizhen Ji · Peter Li · Richard Schoen · Leon Simon

图书在版编目 (CIP) 数据

几何分析手册. 第 2 卷 = Handbook of Geometric Analysis (Vol Ⅱ): 英文/(美) 季理真等编. 一北京: 高等教育出版社, 2010.4

ISBN 978 - 7 - 04 - 028883 - 4

I.①几… II.①季… III.①几何-数学分析-手册 -英文 IV.①O18-62

中国版本图书馆 CIP 数据核字 (2010) 第 021224 号

Copyright © 2010 by

Higher Education Press

4 Dewai Dajie, Beijing 100120, P. R. China, and

International Press

387 Somerville Ave, Somerville, MA, U.S.A

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording or by any information storage and retrieval system, without permission.

策划编辑 王丽萍 责任编辑 王丽萍 封面设计 张申申版式设计 范晓红 责任校对 王 雨 责任印制 毛斯璐

出版发行 社 址	高等教育出版社 北京市西城区德外大街 4 号	购书热线 免费咨询	010 - 58581118 400 - 810 - 0598
邮政编码	100120	网 址	http://www.hep.edu.cn
总 机	010 - 58581000		http://www.hep.com.cn
		网上订购	http://www.landraco.com
经 销	蓝色畅想图书发行有限公司		http://www.landraco.com.cn
印刷	北京中科印刷有限公司	畅想教育	http://www.widedu.com
开 本 印 张 字 数	787 × 1092 1/16 28.5 690 000	版 次 印 次 定 价	2010 年 4 月第 1 版 2010 年 4 月第 1 次印刷 78.00 元

本书如有缺页、倒页、脱页等质量问题,请到所购图书销售部门联系调换。

版权所有 侵权必究 物料号 28883-00

ADVANCED LECTURES IN MATHEMATICS

EXECUTIVE EDITORS

Shing-Tung Yau Harvard University Cambridge, MA. USA

Lizhen Ji University of Michigan Ann Arbor, MI. USA Kefeng Liu University of California, Los Angeles Los Angeles, CA. USA Zhejiang University Hangzhou, China

EXECUTIVE BOARD

Chongqing Cheng Nanjing University Nanjing, China Tatsien Li Fudan University Shanghai, China

Zhong-Ci Shi Institute of Computational Mathematics Chinese Academy of Sciences (CAS) Beijing, China Zhiying Wen Tsinghua University Beijing, China

Zhouping Xin
The Chinese University of Hong Kong
Hong Kong, China

Lo Yang
Institute of Mathematics
Chinese Academy of Sciences (CAS)
Beijing, China

Weiping Zhang Nankai University Tianjin, China Xiangyu Zhou Institute of Mathematics Chinese Academy of Sciences (CAS) Beijing, China

Xiping Zhu Sun Yat-sen University Guangzhou, China Dedicated to Shing-Tung Yau on the occasion of his sixtieth birthday.

Lizhen Ji handed a copy of Handbook of Geometric Analysis, Vol. I to Prof. Yau

Shing-Tung Yau

Richard Schoen

Shing-Tung Yau and Eugenio Calabi

Grigory Margulis and Shing-Tung Yau


All pictures were taken during the conference "Geometric Analysis: Present and Future" Aug27, Sept 1, 2008, most of the pictures were taken by Jeff Mozzochi and Conan Leung.

Shing-Tung Yau

Karen Uhlenbeck, Gerhardt Huisken, Richard Hamilton and Shing-Tung Yau

Shing-Tung Yau and his wife

Peter Li and his wife

Shing-Tung Yau and his wife, Richard Schoen and his wife, and Leon Simon

Shing-Tung Yau and Tristan Hubsch

Mr. and Mrs. Calabi and Shing-Tung Yau

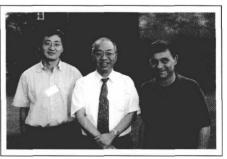
Lawrence J. Lau and Shing-Tung Yau

Xiping Zhu and Shouwu Zhang

Tianjun Li and Conan Leung

Mingzhang Kang, Jin Yu, Chulian Terng and others in the Hall

Alina Marian, Shing-Tung Yau and Jun Li


Shing-Tung Yau, Dexin Kong and Kefeng Liu

Huai-dong Cao and Shing-Tung Yau

Shing-Tung Yau and Lixin Qin

Jun Li, Shing-Tung Yau and Andrey Todorov

Preface

The marriage of geometry and analysis, in particular non-linear differential equations, has been very fruitful. An early deep application of geometric analysis is the celebrated solution by Shing-Tung Yau of the Calabi conjecture in 1976. In fact, Yau together with many of his collaborators developed important techniques in geometric analysis in order to solve the Calabi conjecture. Besides solving many open problems in algebraic geometry such as the Severi conjecture, the characterization of complex projective varieties, and characterization of certain Shimura varieties, the Calabi-Yau manifolds also provide the basic building blocks in the superstring theory model of the universe. Geometric analysis has also been crucial in solving many outstanding problems in low dimensional topology, for example, the Smith conjecture, and the positive mass conjecture in general relativity.

Geometric analysis has been intensively studied and highly developed since 1970s, and it is becoming an indispensable tool for understanding many parts of mathematics. Its success also brings with it the difficulty for the uninitiated to appreciate its breadth and depth. In order to introduce both beginners and non-experts to this fascinating subject, we have decided to edit this handbook of geometric analysis. Each article is written by a leading expert in the field and will serve as both an introduction to and a survey of the topics under discussion. The handbook of geometric analysis is divided into several parts, and this volume is the second part.

Shing-Tung Yau has been crucial to many stages of the development of geometric analysis. Indeed, his work has played an important role in bringing the well-deserved global recognition by the whole mathematical sciences community to the field of geometric analysis. In view of this, we would like to dedicate this handbook of geometric analysis to Shing-Tung Yau on the occasion of his sixtieth birthday.

Summarizing the main mathematical contributions of Yau will take many pages and is probably beyond the capability of the editors. Instead, we quote several award citations on the work of Yau.

The citation of the Veblen Prize for Yau in 1981 says: "We have rarely had the opportunity to witness the spectacle of the work of one mathematician affecting, in a short span of years, the direction of whole areas of research.... Few mathematicians can match Yau's achievements in depth, in impact, and in the diversity of methods and applications."

In 1983, when Yau was awarded a Fields medal, L. Nirenberg described Yau's work up to that point:

"Yau has done extremely deep work in global geometry and elliptic partial differential equations, including applications in three-dimensional topology and in general relativity theory. He is an analyst's geometer (or geometer's analyst) with remarkable technical power and insight. He has succeeded in solving problems on which progress had been stopped for years."

More than ten years later, Yau was awarded the Carfoord prize in 1994, and the citation of the award says:

"The Prize is awarded to ... Shing-Tung Yau, Harvard University, Cambridge, MA, USA, for his development of non-linear techniques in differential geometry leading to the solution of several outstanding problems.

Thanks to Shing-Tung Yau's work over the past twenty years, the role and understanding of the basic partial differential equations in geometry has changed and expanded enormously within the field of mathematics. His work has had an impact on areas of mathematics and physics as diverse as topology, algebraic geometry, representation theory, and general relativity as well as differential geometry and partial differential equations. Yau is a student of legendary Chinese mathematician Shiing-Shen Chern, for whom he studied at Berkeley. As a teacher he is very generous with his ideas and he has had many students and also collaborated with many mathematicians."

In 2010, Yau was awarded the Wolf Prize for his lifetime achievements in geometric analysis and mathematical physics, and the award citation probably gives one of the best summaries of his major works up to 2010:

"Shing-Tung Yau (born 1949, China) has linked partial differential equations, geometry, and mathematical physics in a fundamentally new way, decisively shaping the field of geometric analysis. He has developed new analytical tools to solve several difficult nonlinear partial differential equations, particularly those of the Monge-Ampere type, critical to progress in Riemannian, Kahler and algebraic geometry and in algebraic topology, that radically transformed these fields. The Calabi-Yau manifolds, as these are known, a particular class of Kahler manifolds, have become a cornerstone of string theory aimed at understanding how the action of physical forces in a high-dimensional space might ultimately lead to our four-dimensional world of space and time. Prof. Yau's work on T-duality is an important ingredient for mirror symmetry, a fundamental problem at the interface of string theory and algebraic and symplectic geometry. While settling the positive mass and energy conjectures in general relativity, he also created powerful analytical tools, which have broad applications in the investigation of the global geometry of space-time.

Prof. Yau's eigenvalue and heat kernel estimates on Riemannian manifolds count among the most profound achievements of analysis on manifolds. He studied minimal surfaces, solving several classical problems, and then used his results, to create a novel approach to geometric topology. Prof. Yau has been exceptionally productive over several decades, with results radiating onto many areas of pure and applied

Preface

mathematics and theoretical physics.

In addition to his diverse and fundamental mathematical achievements, which have inspired generations of mathematicians, Prof. Yau has also had an enormous impact, worldwide, on mathematical research, through training an extraordinary number of graduate students and establishing several active mathematical research centers."

Indeed, he has already trained more than 60 Ph.D. students.

We wish Yau a happy sixtieth birthday and continuing success in many years to come!

Lizhen Ji Peter Li Richard Schoen Leon Simon

Contents

Heat	Kernels on Metric Measure Spaces with Regular Volume Growth				
	Alexander Grigor'yan 1				
	1	Intro	oduction	1	
		1.1	Heat kernel in \mathbb{R}^n	2	
		1.2	Heat kernels on Riemannian manifolds	3	
		1.3	Heat kernels of fractional powers of Laplacian	4	
		1.4	Heat kernels on fractal spaces	5	
		1.5	Summary of examples	7	
	2	Abs	tract heat kernels		
		2.1	Basic definitions	8	
		2.2	The Dirichlet form	11	
		2.3	Identifying Φ in the non-local case	13	
		2.4	Volume of balls	17	
	3	Bes	ov spaces	21	
		3.1	Besov spaces in \mathbb{R}^n	21	
		3.2	Besov spaces in a metric measure space	23	
		3.3	Embedding of Besov spaces into Hölder spaces	24	
	4	$\mathrm{Th}\epsilon$	e energy domain	26	
		4.1	A local case	26	
		4.2	Non-local case	31	
		4.3	Subordinated heat kernel	32	
		4.4	Bessel potential spaces	35	
	5	The	e walk dimension	36	
		5.1	Intrinsic characterization of the walk dimension	36	
		5.2	Inequalities for the walk dimension	36	
	6	Tw	ro-sided estimates in the local case	46	
		6.1	The Dirichlet form in subsets	46	
		6.2		47	
		6.3	A tail estimate		
		6.4		5	
	F	Refere	ences	5	

vi Contents

A Co			Theorem and Reduced Delzant Spaces	
	Bo	ng H.	Lian, Bailin Song	61
	1	Introd	duction	61
	2		exity of image of moment map	64
	3		nality of moment polytope	69
	4		zing reduced Delzant spaces	
	5		ification of reduced Delzant spaces	
			es	
	100	1010110		
Loca	liza	tion a	and some Recent Applications	
	$B\epsilon$	ong H.	Lian, Kefeng Liu	97
	1	Intro	duction	97
	$\frac{1}{2}$		lization	100
	3		or principle	102
	4		Vafa formula	112
	5		Mariño-Vafa Conjecture	115
	6		partition formula	123
	7		bry of topological vertex	125
	8	Gopa	akumar-Vafa conjecture and indices of elliptic operators	128
	9		proofs of the ELSV formula	129
	10	A lo	ocalization proof of the Witten conjecture	132
	11		al remarks	134
	\mathbf{R}	eferenc	ces	134
~		337° 4	ten Invariants of Toric Calabi-Yau Threefolds	
Gro	mo	V- VV 1U	hu Melissa Liu	139
	C			_
	1	Groi	mov-Witten invariants of Calabi-Yau 3-folds	139
		1.1	Symplectic and algebraic Gromov-Witten invariants	139
		1.2	Moduli space of stable maps	139
		1.3	Gromov-Witten invariants of compact Calabi-Yau 3-folds	140
		1.4	Gromov-Witten invariants of noncompact Calabi-Yau	
			3-folds	141
	2	Trac	ditional algorithm in the toric case	142
		2.1	Localization	142
		2.2	Hodge integrals	143
	3	Phy	sical theory of the topological vertex	144
	4	Mat	chematical theory of the topological vertex	146
		4.1	Locally planar trivalent graph	. 146
		4.2	Formal toric Calabi-Yau (FTCY) graphs	148
		4.3	Degeneration formula	150
		4.4	Topological vertex	152
		4.5	Localization	153
		4.6	Framing dependence	
		47	Combinatorial expression	15^{4}

Contents	***
Comemo	VII

.

4.8 Applications 4.9 Comparison 5 GW/DT correspondences and the topological vertex Acknowledgments References	155 155 156 156 156
Survey on Affine Spheres John Loftin	161
1 Introduction 2 Affine structure equations. 3 Examples. 4 Two-dimensional affine spheres and Titeica's equation. 5 Monge-Ampère equations and duality. 6 Global classification of affine spheres. 7 Hyperbolic affine spheres and invariants of convex cones. 8 Projective manifolds. 9 Affine maximal hypersurfaces. 10 Affine normal flow. References.	168 172 173 176 181 185 186
Convergence and Collapsing Theorems in Riemannian Geometry Xiaochun Rong	193
Introduction	194 194
1.4 Compact subsets of $(\mathcal{M}et, d_{GH})$. 1.5 Equivariant GH-convergence	202 204 206
1.4 Compact subsets of $(\mathcal{M}et, d_{GH})$	202 204 206 209 217 217 219 223 226 231 234 235

.

viii Contents

		3.5 Smoothing metrics	259
	4	Singular limits-singular fibrations	260
		4.1 Singular fibrations	261
		4.2 Controlled homotopy structure by geometry	265
		4.3 The π_2 -finiteness theorem	269
		4.4 Collapsed manifolds with pinched positive sectional	
			271
	5		273
	-	5.1 Gromov's theorem on almost flat manifolds	273
			275
			277
			281
			285
		5.6 Proofs—part II	290
			294
	$R\epsilon$	eferences	297
Geor	met	tric Transformations and Soliton Equations	
	Cl	huu-Lian Terng 3	301
	1	Introduction	301
	2	The moving frame method for submanifolds	306
	3	Line congruences and Bäcklund transforms	309
	4	Line congruences and Daemand Constitution	315
	5	Combescure transforms, O-surfaces, and k-tuples	317
	6	Composition of anisotropy	320
	7	110m moving mame to zem personal	329
	8	The $\frac{U}{K}$ -system and the Gauss-Codazzi equations	336
	9	Loop group actions	343
	10	The state of the s	347
		eferences	355
Affi	ne :	Integral Geometry from a Differentiable Viewpoint	
	D	Deane Yang	359
	-	Introduction	359
	1		361
	2	2.1 Linear group actions	361
	0		362
	3		362
			362
			362
			362
	,		363
	4		363
	5		363
		5.1 The support function	364
		0.4 THE WHIKOWSKI BUILD	

Contents ix

	5.3 The polar body	365
	5.4 The inverse Gauss map	366
	5.5 The second fundamental form	366
	5.6 The Legendre transform	366
	5.7 The curvature function	367
6	The homogeneous contour integral	368
	6.1 Homogeneous functions and differential forms	368
	6.2 The homogeneous contour integral for a differential form	369
	6.3 The homogeneous contour integral for a measure	369
	6.4 Homogeneous integral calculus	373
7	An explicit construction of valuations	374
	7.1 Duality	375
	7.2 Volume	375
8	Classification of valuations	376
9	Scalar valuations	376
	9.1 $SL(n)$ -invariant valuations	376
	9.2 Hug's theorem	378
10	Continuous $\operatorname{GL}(n)$ -homogeneous valuations	378
	10.1 Scalar valuations	378
	10.2 Vector-valued valuations	379
11	Matrix-valued valuations	380
	11.1 The Cramer-Rao inequality	381
12	Homogeneous function- and convex body-valued valuations	383
13	Questions	384
$R\epsilon$	eferences	385
	cation of Fake Projective Planes	
Sa	ni-Kee Yeung	391
1	Introduction	391
$\overset{1}{2}$	Uniformization of fake projective planes	393
3	Geometric estimates on the number of fake projective planes	396
4	Arithmeticity of lattices associated to fake projective planes	398
5	Covolume formula of Prasad	410
6	Formulation of proof	411
7	Statements of the results	419
8	Further studies	423
_	eferences	427