NORTH-HOLLAND
MATHEMATICAL LIBRARY

fovering Codes

G. COHEN
|. HONKALA
S. LITSYN
A. LOBSTEIN

North-Holland



Covering Codes

Gérard COHEN
ENST, Paris, France

Iiro HONKALA
University of Turku, Finland

Simon LITSYN

Tel-Aviv University, Israel

Antoine LOBSTEIN
CNRS - ENST, Paris, France

i

1997
ELSEVIER
Amsterdam — Lausanne — New York — Oxford — Shannon — Tokyo



ELSEVIER SCIENCE B.V.
Sara Burgerhartstraat 25
P.O. Box 211, 1000 AE Amsterdam, The Netherlands

ISBN: 0 444 82511 8
© 1997 Elsevier Science B.V. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in
any form or by any means, electronic, mechanical, photocopying, recording or otherwise,
without the prior written permission of the publisher, Elsevier Science B.V., Copyright &
Permissions Department, P.O. Box 521, 1000 AM Amsterdam, The Netherlands.

Special regulations for readers in the U.S.A. — This publication has been registered with the
Copyright Clearance Center Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923.
Information can be obtained from the CCC about conditions under which photocopies of
parts of this publication may be made in the U.S.A. All other copyright questions, including
photocopying outside of the U.S.A., should be referred to the publisher.

No responsibility is assumed by the publisher for any injury and/or damage to persons or
property as a matter of products liability, negligence or otherwise, or from any use or
operation of any methods, products, instructions or ideas contained in the material herein.

This book is printed on acid-free paper

Printed in The Netherlands



COVERING CODES



North-Holland Mathematical Library

Board of Honorary Editors:

M. Artin, H. Bass, J. Eells, W. Feit, P.J. Freyd, EW. Gehring,
H. Halberstam, LV. Hormander, J.H.B. Kemperman, H.A. Lauwerier,
W.A.J. Luxemburg, F.P. Peterson, .M. Singer and A.C. Zaanen

Board of Advisory Editors:

A. Bjorner, R.H. Dijkgraaf, A. Dimca, A.S. Dow, J.J. Duistermaat,

E. Looijenga, J.P. May, 1. Moerdijk, S.M. Mori, J.P. Palis, A. Schrijver,
J. Sjostrand, J.H.M. Steenbrink, F. Takens and J. van Mill

VOLUME 54

ELSEVIER
Amsterdam — Lausanne — New York — Oxford — Shannon — Tokyo



To

Aude, Clairette and Maurice
Aino, Kauko and Juha
Maya, FElena, Lola and Nathan

Martine, Doud and André



Preface

Covering and packing the euclidean space by spheres are old and well-known
problems. The discrete counterpart of the packing problem has been ex-
tensively studied within the theory of error-correcting codes. Its dual, the
covering problem, has received much less attention over the years. The last
decade, however, has witnessed the blossoming of active research in the area,
now materialized in the publication of over 500 papers. We feel that during
these ten years the area of covering codes has come of age and developed into
an elegant discipline with its own flavour and techniques. Our purpose is,
on the one hand, to give an account on the state of the art in the theory of
covering codes and, on the other hand, to show how a number of issues are
related to — or can be viewed as — covering problems.

In a basic covering problem, we have a vector space over a finite alphabet
which we wish to cover with as few spheres of a given radius as possible. This
means that we can approximate any point in the space by one or more of the
centres with a given accuracy. The covering problems are mathematically and
aesthetically appealing in their own right, and lend themselves to technical
applications, e.g., data compression.

This book is intended for people involved in communication, algorithms,
computer science, discrete mathematics, geometry, algebra or number theory.
We have strived to remain accessible to a wide audience, although a minimal
background in coding theory, algebra and discrete mathematics is occasionally
required. The chapters are fairly independent, which should allow nonlinear
reading.

Roughly speaking, the first half of the book is about the covering radius of
codes — and we shall emphasize binary codes — whereas the second half deals
with generalizations and related problems. We begin with basic definitions
and results in the first two chapters. Chapters 3, 4 and 5 are devoted to
constructing codes with small covering radius. In Chapter 4 we study nor-
mality, the amalgamated direct sum construction and various generalizations.
Chapter 5 focuses on linear codes. In Chapters 6 and 7, we present nonex-
istence results for nonlinear and linear codes, and show how to improve on
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viii Preface

the sphere-covering bound. In Chapter 8 bounds are derived on the maxi-
mum possible covering radius of a code with a given length, cardinality and
minimum or dual distance. In the next two chapters we study the covering
radius of certain families of codes including the Reed-Muller and BCH codes.
In Chapter 11 we give a thorough account of perfect codes. Chapter 12 is
devoted to asymptotical covering radius problems. The next two chapters
discuss natural generalizations of the covering radius problem, like weighted
coverings, multiple coverings and multiple coverings of deep holes. Chapter
15 deals with a more recreational application, namely, how to use covering
codes in connection with football pools. Chapter 16 studies partitions of the
binary space into tiles, i.e., cosets of a given set. In the next chapter, we
study a general model of constrained memories; it turns out to rely on the
worst-case behaviour of the covering radius of shortened codes. In Chapter 18
we explore the connections between graphs, groups and codes and how spe-
cific techniques pertaining to these three areas are intertwined. Chapter 19
is devoted to variations on the theme of perfect coverings by spheres, namely
coverings by unions of shells, by spheres of two or more radii, or by spheres
all of different radii. In Chapter 20 we study various complexity issues related
to the field.

We are greatly indebted to Noga Alon, Volodya Blinovskii, Sasha Davydov,
Tuvi Etzion, Peter Frankl, Philippe Godlewski, Laurent Habsieger, Heikki
Hamalainen, Juha Honkala, Olivier Hudry, Osnat Keren, Ilia Krasikov, Tero
Laihonen, Frangoise Levy-dit-Vehel, Skip Mattson, Patric (")stergé.rd, Arto
Salomaa, Juriaan Simonis, Jakov Snyders, Patrick Solé, Aimo Tietaviinen,
Alex Vardy, Gilles Zémor and Victor Zinoviev for their comments and inspir-
ing discussions.

We gratefully acknowledge the assistance of Gloria Garcia, Titia Kraaij,
Manuel Moreni, Michelle Nahum and Arjen Sevenster.
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