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Preface

This book is an introduction to the theory of lattice-ordered rings. It
is suitable for graduate and advanced undergraduate students who have
finished an abstract algebra class. It can also be used as a self-study book
for one who is interested in the area of lattice-ordered rings.

The book mainly presents some foundations and topics in lattice-ordered
rings. Since we concentrate on lattice orders, most results are stated and
proved for such structures, although some of results are true for partially
ordered structures. This book considers general lattice-ordered rings. How-
ever I have tried to compare results in general lattice-ordered rings with
results in f-rings. Actually a lot of research work in general lattice-ordered
rings is to generalize the results of f-rings. I have also tried to make the
book self-contained and to give more details in the proofs of the results.
Because of elementary nature of the book, some results are given without
proofs. Certainly references are given for those results.

Chapter 1 consists of background information on lattice-ordered groups,
vector lattices, and lattice-ordered rings and algebras. Those results are
basic and fundamental. An important structure theory on lattice-ordered
groups and vector lattices presented in Chapter 1 is the structure the-
ory of lattice-ordered groups and vector lattices with a basis. Chapter
2 presents algebraic structure of lattice-ordered algebras with a distribu-
tive basis, which is a basis in which each element is a distributive element.
Chapter 3 concentrates on positive derivations of lattice-ordered rings. This
topic hasn’t been systematically presented before and I have tried to present
most of the important results in this area. In Chapter 4, some topics of
general lattice-ordered rings are considered. Section 4.1 consists of some
characterizations of lattice-ordered matrix rings with the entrywise order
over lattice-ordered rings with positive identity element. Section 4.2 gives
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viii Algebraic Structure of Lattice-Ordered Rings

the algebraic structure of lattice-ordered rings with positive cycles. In gen-
eral lattice-ordered rings, f-elements often play important roles on their
structures. In Section 4.3 we present some result along this line. Section
4.4 is about extending lattice orders in an Ore domain to its quotient ring.
In Section 4.5 we consider how to generalize results on lattice-ordered ma-
trix algebras over totally ordered fields to lattice-ordered matrix algebras
over totally ordered integral domains. Section 4.6 consists of some results
on lattice-ordered rings in which the identity element may not be positive.
In Section 4.7, all lattice orders on 2 x 2 upper triangular matrix algebras
over a totally ordered field are constructed, and some results are given for
higher dimension triangular matrix algebras. Finally in Chapter 5, proper-
ties and structure of ¢-ideals of lattice-ordered rings with a positive identity
elements are presented.

I would like to thank Dr. K.K. Phua, the Chairman and Editor-in-Chief
of World Scientific Publishing, for inviting me to write this lecture notes vol-
ume. [ also want to express my thanks to my colleague Ms. Judy Bergman,
University of Houston-Clear Lake, who has kindly checked English usage
and grammar of the book. I will certainly have full responsibility for mis-
takes in the book, and hopefully they wouldn’t give the reader too much
trouble to understand its mathematical contents.

Jingjing Ma

Houston, Texas, USA
December 2013
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Chapter 1

Introduction to ordered algebraic
systems

In this chapter, we introduce various ordered algebraic systems and present
some basic and important properties of these systems.

1.1 Lattices

For a nonempty set A, a binary relation < on A is called a partial order on
A if the following properties are satisfied.

(1) (reflexivity) a < a for all a € A,
(2) (antisymmetry) a < b, b < a implies ¢ = b for all a,b € A,
(3) (transitivity) @ < b, b < ¢ implies a < ¢, for all a,b,c € A.

The set A under a partial order < is called a partially ordered set. One
may write b > a to denote a < b, and a < b (or b > a) to mean that a < b
and a # b. If either a < b or b < a, then a and b are called comparable,
otherwise a and b are called incomparable. A partial order < on a set A is
called a total order if any two elements in A are comparable. In the case
that < is a total order, A is called a totally ordered set or a chain. Suppose
that two partial orders, < and <’, are defined on the same set A. Then we
say that <’ is an extension of < if, for all a,b € A, a < b implies a <’ b.

A partial order < on A induces a partial order on any nonempty subset
B of A, that is, for any a,b € B, define a < b in B if a < b with respect to
the original partial order of A. The induced partial order on B is denoted
by the same symbol <.

For a subset B of a partially ordered set A an upper bound (lower bound)
of Bin Ais an element € A (y € A) such that b < z (b > y) for each
b € B. We may simply denote that € A (y € A) is an upper (lower) bound
of Bby B <z (B >y). Bis called bounded in A if B has both an upper
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bound and a lower bound in A. The set of all upper (lower) bounds of B
in A is denoted by Ua(B) (La(B)). If B = (), where (} denotes empty set,
then Uy (B) = La(B) = A. An element u € B (v € B) is called the least
element (greatest element) of B if u < b (v > b) for each b € B. A subset
B of a partially ordered set may not have a least (greatest) element, but
if there exists one, then it is unique since partial orders are antisymmetric.
An element w € B (z € B) is called a minimal element (mazimal element)
in B if for any b € B, b < w (b > z) implies b = w (b = z), that is, no
element in B is strictly less (greater) than w (z). A subset of a partially
ordered set may contain more than one minimal or maximal element.
Suppose that L is a partially ordered set with a partial order <. The <
is called a lattice order and L is called a lattice under < if for any a,b € L,
the set Ur({a,b}) has the least element and the set L({a,b}) has the
greatest element, namely, for any a,b € L, the subset {a, b} has the least
upper bound and greatest lower bound that are denoted respectively by

aVb andaAb

a V b is also called the sup of a and b, and a A b is also called the inf of a
and b. A nonempty subset B of a lattice L is called a sublattice of L if for
any a,b € B, aVb,aAb € B. A lattice L is called distributive if for all
a,b,c € L,

aV(bAc)=(aVb)A(aVe) and aA(bVe)=(aAb)V (aAc),

and L is called complete if each subset of L has both an inf and a sup in
L. In a lattice L, for any a, b, c € L, by the definition of least upper bound
and greatest lower bound, we have

aV((dVe)=(avb)Ve and aA(bAc)=(anb)Ae

This is true for any finitely many elements in L, and hence we just use
apV---Va, and a1 A --- A a, to denote the sup and inf of ay, -, ay,
respectively.

The following is an example that illustrates some concepts defined
above. More examples may be found in the exercises of this chapter.

Example 1.1. For a given set A, let P4 = {B | B is a subset of A} be the
power set of A. For two subsets B, C of A, define B < C if B C C, where
“B C C” means that B is a subset of C. Then < is actually a lattice order
and for any B,C € P4, BVC = BUC and BAC = BNC. Clearly 0 is
the least element of P4 and A is the greatest element of P4. Moreover, Py
is a distributive and complete lattice (Exercise 3).
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If A contains more than one element, then P, is not a totally ordered
set since for two different elements a,b € A, the sets {a} and {b} are not
comparable. Also the subset B = {{a},{b}} of P4 has no least and greatest
element, and each element in B is a minimal element and a maximal element
since {a} and {b} are not comparable.

This is a suitable place to state Zorn’s lemma, which is equivalent to
Axiom of Choice. For the proof and other equivalent forms of the lemma,
see [Steinberg (2010)].

Theorem 1.1 (Zorn’s Lemma). Let A be a nonempty partially ordered
set. If each subset of A which is a chain has an upper bound in A, then A
contains a mazximal element.

1.2 Lattice-ordered groups and vector lattices

In this section we introduce partially ordered groups, lattice-ordered groups,
vector lattices, and consider some basic properties of those ordered algebraic
systems. We will always use addition to denote group operation although
it may not be commutative. Certainly for a vector lattice, the addition on
it is commutative.

1.2.1 Definitions, examples, and basic properties

Definition 1.1. A partially ordered group G is a group and a partially
ordered set under a partial order < such that G satisfies the following
monotony law: for any a,b € G,

a<b = c+a<c+banda+t+c<b+cforallececd.

A partially ordered group G is a lattice-ordered group (¢-group) if the partial
order is a lattice order, and G is a totally ordered group (o-group) if the
partial order is a total order.

In a partially ordered group G, an element g is called positive if g > 0,
where 0 is the identity element of G, and g is called strictly positive if g > 0.
The set Gt = {g € G | g > 0} is called the positive cone of G, and define
~Gt={9geG|—-g€GT} ={g € G|g <0}, which is called negative cone
of G. Gt is a normal subsemigroup of G containing 0, but no other element
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along with its inverse, as shown in the following result. From the following
two theorems, positive cones characterize partially ordered groups.

Theorem 1.2. For a partially ordered group G, the positive cone GT sat-
isfies the following three conditions:

(1) G+ + G+ C G+,
(2) g+ G+t +(—g) CG™T, for all g € G,
(8) Gt n-G* = {0}.

Proof. (1) Let g,f € G*. Then 0 < f < g+ f, 800 < g+ f. Thus
g+ feaGt.
(2) Let f € G*. Then 0 = g+(—g) < g+ f+(—g),s0 g+f+(—g) € G*.
(3) Clearly 0 € G* N —G™. Suppose that g € G* N —G*. Then g > 0
and —g > 0, so g > 0 and g <0, and hence g = 0. O

Theorem 1.3. Let G be a group and P be a subset of G which satisfies the
following three conditions:

(1) P+PCP,
(2) g+ P+ (—g) C P forallg € G,
(3) PN —P = {0}, where —-P={g€ G| —g¢€ P}.

For any a,b € G, definea < b ifb—a € P. Then < is a partial order on
G and G becomes a partially ordered group with the positive cone P.

Proof. For any a € G, a —a = 0 € P implies a < a, so < is reflexive.
Suppose that for a,b € G, a < band b < a, then b—a,a—b € P,sob—a € P
and b—a= —(a—b) € —P. Thus b—a =0 by (3), and hence a = b, so <
is antisymmetric. Now assume that a < b and b < ¢ for a,b,c € G. Then
b—a,c—be P,soby (1) c—a=(c—b)+(b—a) € P. Thusa < ¢, so
< is transitive. Suppose that a < b for a,b € G and g € G. Then from
b—ae€ P and (2),

(g+b)—(g+a)=g+ (b—a)+(—g) € P,
sog+a<g+b Also
(b+g)—(a+g)=b+g9g—g—a=b—a€P,

so a+ g < b+ g. Therefore GG is a partially ordered group with respect to
the partial order <. Clearly Gt = {g€ G | g >0} = P. O

Theorem 1.4. Suppose that G is a partially ordered group with the positive
cone P.
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(1) G is an €-group if and only if G = {a—b | a,b € P} and P is a lattice
under the induced partial order from G.
(2) G is a totally ordered group of and only if G = P U —P.

Proof. (1) Suppose that G is an ¢-group. For g € G, let f = gA0. Then
—fe€Pandg—feP.Sinceg=(9g—f)—(—f),G={a—b]| a,be P}.
It is clear that for any a,b € P, aV b,a Ab € P. Conversely, suppose
that G = {a — b | a,b € P} and P is a lattice with respect to the induced
partial order from G. For any g € G, let g =x —y, z,y € P. Suppose that
z=zVy e P. We claim that gv0 = z—y in G. It is clear that z—y > 0, g.
Suppose that v € G and u > ¢,0. Then u+y > z,y and u+y € P, so
w+ 1y > z. Then it follows that v > z — y, and hence gV0 =z — gy in G.
Similarly to show that g A 0 exists in G. Generally for any g, f € G, it is
straightforward to check that

gVIi=[g-FVOl+fandgAf=[(g—f)NO]+f
(Exercise 5). Therefore G is a lattice, so G is an ¢-group.

(2) If G = PU—P, then for any g, f € G, either g— f € P or —P, and
hence g > f or g < f. Thus G is a total order. The converse is clear. [

A partially ordered group is called directed if each element is a differ-
ence of two positive elements. An ¢-group is directed by Theorem 1.4(1).
However a partially ordered group which is directed may not be an ¢-group
as shown in Example 1.2(3). A partially ordered group G is said to be
Archimedean if for any a,b € GT, na < b for all n € Z* implies a = 0,
where Z* is the set of all positive integers.

In this book we often use notation (G, P) to denote a partially ordered
group or an f-group with the positive cone P.

We illustrate partially ordered groups and 4-groups by a few examples.
P will always denote the positive cone of a partially ordered group.

Example 1.2.

(1) Let G be the additive group of Z or Q, or R with the usual order between
real numbers. Then G is an Archimedean totally ordered group.

(2) Consider the group direct product R x R. Let (z,y) belong to P if
either y > 0or y =0 and z > 0. Then R x R is a totally ordered group
which is not Archimedean since for any n € ZT, n(1,0) < (0, 1).

(3) Consider R x R again. Define (z,y) € Pif z > 0 and y > 0, or
(z,y) = (0,0). Then R x R is an Archimedean partially ordered group
but not an ¢-group. For instance, (1,0) and (0,0) have no least upper
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bound. We leave the verification of this fact as an exercise to the reader
(Exercise 6). We note that for any (z,y) € RxR, (z,y) = (z,0)+(0,y),
and (z,0), (0,y) are either positive or negative, so (x,y) can be written
as a difference of two positive elements. Thus this partially ordered
group is directed.

Since in this book, we concentrate on lattice orders, in the following we
only prove some basic properties of /-groups.

Theorem 1.5. Let G be an £-group.

(1) For all a,b,c,d € G, c+(aVb)+d = (c+a+d)V (c+b+d),
c+(anb)+d=(c+a+d)A(c+b+d).

(2) For all a,be G, —(aVb)=(—a)A(=b), —(aAb) = (—a)V (=b).

(3) As a lattice, G is distributive.

(4) For all a,b € G, a— (aAb)+b=aVb IfG is commutative, then
a+b=(anb)+ (aVb), for all a,b e G.

(5) If na > 0 for some positive integer n, then a > 0.

(6) If x,y1,--- ,yn are positive elements such that x < y1 + -+ + yn, then
x =x1+- -4z, for some positive elements 1, -+ ,x, withx; < y;,i =
Ly-ee

(7) If x,y1,-++ ,yn are positive elements, then x A (y1 + -+ +yn) < (z A

y1) + -+ (T Ayn).
Proof. (1) FromaVb > a,b, we have c+(aVb)+d > (c+a+d), (c+b+d),
SO
c+(avb)+d>(c+a+d)V(c+b+d).
On the other hand, (¢c+a+4d), (c+b+d) < (c+a+d)V (c+ b+ d) implies
a,b< —c+ (c+a+d)V(e+b+d)+ (—d),
and hence
aVb< —c+(c+a+d)V(c+b+d) + (—d).

Therefore ¢+ (aVb) +d < (c+a+d)V (¢ + b+ d). We conclude that
c+(aVb)+d=(ct+ta+d)V(c+b+d). Similarly we have c+ (aAb)+d =
(c+a+d)A(c+b+d).

(2) We have

a,b<aVb= —(aVb) < —a,-b=—(aVb) < —aA—b,
and

—aAN-b< —a,-b=>a,b< —(—aN-b)=>aVb< —(—aA-b),



