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Preface

The purpose of this book is to present sources, theory, and applications of
stochastic differential equations of Itd’s type; that is, differential equations
that contain white noise. It gives the basic theory and a wide range of
applications. The main theme of the book is the study of first passage
problems by modern singular perturbation methods and their role in
various fields of science. The material is so presented as to make the theory
available to the applied mathematicians, physicists, chemists, and en-
gineers, who are usually well versed in classical analysis but may feel
uneasy in the realms of modern probability and measure theory. The
prerequisites for this book are therefore a working knowledge of advanced
calculus, elementary theory of ordinary and partial differential equations,
and of course, elementary probability theory. The professional probabilist
will find here some new analytic methods for the computation of first
passage times, transition and exit probabilities, and other quantities of
interest. Special stress has been put on modeling phenomena in a variety of
scientific areas by stochastic differential equations. Thus phenomena in
chemical kinetics, solid-state diffusion, genetics, filtering of signals from
noise, and more are modeled.

Since Einstein’s creation of the mathematical theory of the Brownian
motion and molecular diffusion, much scientific work has been done on its
applications in such diverse areas as molecular and atomic physics, chemi-
cal kinetics, solid-state theory, stability of structures, population genetics,
communication, and many other branches of the natural and social sci-
ences and engineering. The most prominent work in the early stages of
the theory of stochastic differential equations was done by Einstein,
Smoluchowski, Langevin, Ornstein and Uhlenbeck, and Kramers and was
summarized in Chandraselhar’s fundamental paper in 1943. The mathe-
matical theory of stochastic differential equations was developed consider-
ably in the last 25 years and several very rigorous mathematical texts on
this subject have appeared. Some very important results were discovered
by the mathematical researchers in this field; in particular, the equatio..s
for first passage times and exit distributions were derived. The Itd6 and
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viil Preface
Stratonovich calculi in particular gave the theory of stochastic differential
equations an enormous push forward. Unfortunately, the gap between the
mathematical theory and the sources of the problems has widened to such
an extent that, generally, physicists, chemists, and engineers remained
unaware of the mathematical techniques now available, while the mathe-
maticians remained unaware of the sources and applications of their
theories. The complexity of the theory and the mathematical rigor made
the mathematical texts virtually unapproachable to the nonspecialist. This
book is an attempt to bridge this gap.

Chapters 1 and 2 present the relevant probability theory, construction of
the Brownian motion, and the theory of Itd and Stratonovich integration
and calculus. The more demanding and mathematically rigorous material
has been relegated to separate sections marked by an asterisk. Such
sections should be omitted in the first reading of the book. The basic
theory of stochastic differential equations is presented in Chapters 3
through 5. Special attention should be given to the exercises because they
contain many classical applications of the theory; in particular, Einstein’s
and Smoluchowski’s theories of diffusion and their applications are con-
tained in the exercises. Chapter 4 also establishes the connection between
Markov and diffusion processes on the one hand and solutions of sto-
chastic differential equations on the other. In Chapter 5 the relationship
between stochastic differential equations and partial differential equations
is demonstrated; the basic equations of Fokker—Planck, Kolmogorov,
Dynkin, Feynman, and Kac are derived; and boundary behavior is dis-
cussed. A method for the treatment of first passage problems by partial
differential equations is developed through the It6 calculus. The main
contribution of this book are Chapters 6 through 9. Chapter 6 presents the
asymptotic theory of stochastic differential equations and its applications
in statistical mechanics, transport theory, and mathematical genetics. In
Chapter 7 singular perturbation problems that arise from the Smoluchow-
ski-Kramers theory are treated by a new method, developed by B.
Matkowsky and myself. Physical applications of the theory are presented
in Chapter 8. Mathematical models of chemical reactions, diffusion, and
conductivity in ionic crystals are given. Chapter 9 contains elements of
filtering theory in state space and the role of first passage times is shown.
Finally, Chapter 10 contains Smoluchowski’s theory in the context of the
kinetic theory of gases, and a short review of some basic notions in the
theory of classical mechanics and partial differential equations. The uni-
form mathematical treatment reduces many of the problems to that of the
determination of the expected first exit time by solving singularly per-
turbed boundary value problems for partial differential equations. The
singular perturbation methods presented in this book lead to explicit
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expressions for probabilistic and consequently physical quantities of inter-
est, such as the steric factor in the Arrhenius law, reaction rates in
multistage chemical reactions, the diffusion tensor for atomic migration in
crystals, the electric conductivity in ionic crystals, and the “click” frequency
in a FM filter. It is my hope that the book will bridge the gap between the
mathematical theory of stochastic differential equations and the natural
sciences by giving the scientist a new mathematical tool and by giving the
mathematicians some insight into the role of stochastic differentia! equa-
tions in the sciences.

My interest in stochastic differential equations was a consequence of a
course on this subject given by H. McKean, Jr., at the Weizmann Institute
of Science in Rehovot, for which T am grateful. The idea of the book began
with a series of lectures in the Applied Mathematics Seminar that I gave at
RPI in 1975-1976. It continued with a set of lecture notes from the
Applied Mathematics Institute, the University of Delaware in 1976-1977,
and completed at Tel-Aviv University and Northwestern University in the
summers of 1978 and 1979. I am grateful to these institutions for their
hospitality. The book is based on my joint work with B. Matkowsky,
E. Larsen, B. Levikson, S. Eliezer and B. Z. Bobrovsky, for whose coopera-
tion I am deeply indebted. The preparation of this manuscript was par-
tially supported by AFOSR grants 77-3372 and 78-3602B in 1977-1980 at
the University of Delaware and Northwestern University.

ZEEV SCHUSS

Ramat-Aviv, Israel
September 1980
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CHAPTER 1

Review of
Probability Theory

1.1 EVENTS AND SAMPLE SPACES

Consider the experiment of tossing a fair coin three times. The possible
outcomes of this experiment are HHH, HHT, HTH, THH, HTT, THT,
TTH, and TTT, where H denotes heads and T denotes tails. Each possible
outcome of the experiment is called an elementary event. Thus there are
eight elementary events in the experiment of tossing a coin three times.
More complicated events can be expressed as combinations of the elemen-
tary events. Thus the event “two or more heads turn up” in the coin-
tossing experiment, which we denote by D, consists of the elementary
events HHH, HHT, HTH, THH; that 1s,

D={HHH,HHT,HTH, THH}.

The set Q of all elementary events corresponding to an experiment is called
a sample space and each elementary event, denoted by w, is called a point
in ©. In the particular example under consideration, we have

Q= {HHH,HHT,HTH, THH, TTH, THT, HTT, TTT}.

We write w € to read, “w is a point in (or an element of) £.” Any event A4
that consists of elementary events is a subset of . In particular, the
impossible event &, that is, an event that contains no elementary events, is
called the empty set. Let A and B be events in {2; then we say that 4 is a
subset of B if every element of A4 is also an element of B, and we write
A CB. Obviously, ACQ, JcA, and ACA. For example, the set D in the
coin-tossing experiment is a subset of the set (event) E: “at least one head

1



2 Review of Probability Theory
turns up.” More specifically,

(HHH,HHT,HTH,THH}=DC E
= (HHH, THH, HTH, HHT, TTH, THT, HTT} .

We say that two subsets 4 and B of 2 are equal if they consist of the same
elements; that is, A=B if ACB and BCA. We say that two subsets of
(two events), A and B, are disjoint if they have no common elements. Thus
the set F: “at least two tails turn up” and the set D in the coin-tossing
experiment are disjoint sets. However, the sets £ and F are not disjoint.
Very often, the sample space contains infinitely many points (elementary
events). Consider, for example, the experiment of sampling the velocities of
the molecules of a monatomic gas consisting of n molecules of mass m in
thermal equilibrium. Let, v,=(v}, v, v})7 (i=1,2,...,n) be the velocity
vectors of the molecules at the moment the experiment is conducted. We
assume that the gas is ideal, thus neglecting the potential energy of
intermolecular forces. Denoting the total energy of the gas by E, we have

where |v,|2=v,*y,=Z]_ v/v/. Since E is assumed constant, we see that any
outcome of the experiment is a point on the surface of the 3n-dimensional
sphere S of radius (2 E/m)'/2. We may identify the sample space for this
experiment with the set of all points on the surface S. A typical event is G:
“the first component of v, satisfies the inequality a<v, <b.” The set G is
therefore a spherical zone on S.

Given two subsets 4 and B of a sample space €2, we denote by AU B the
subset of Q whose elements are those which belong to 4 or to B. The set
AU B is called the union of A and B. More generally, given a finite or

infinite sequence { A j}, Jj=12,..., of subsets of , we denote by

A=A|UA2U"'EU Aj
J

the set whose elements are those which belong to at least one of the sets 4.
Thus the event U, A; occurs if at least one of the events 4, (j= 1,2,...)
does. The set A=, 4, is called the union of the sets 4. It is easy to see
that AUA=A, AUQ=R and AUDT=A. If ACQ and BC{, then the set
A — B consists of those elements of 4 which are not elements of B. The set

A — B is called the difference of A and B. Thus in the coin-tossing example,
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we have
E—-D= {HTT,THT,’ITH} s

that is, £E— D: “exactly one head turns up,” so that E—D occurs if E
occurs but not D. We also have D— E=. Obviously, A —F=A4, A—A=
&, and A—Q=. If A and B are disjoint events, then A — B=A. Given a

finite or infinite sequence {4}, j=1,2,..., of subsets of {2, we denote by
A=A NA;,N---=() 4;
J
the set whose elements belong to all the sets 4;, j=1,2,... . The set

A=A, is called the intersection of the sets A;. The event N, A4, occurs if
all the events 4;, j=1,2,..., occur. Obviously, ANA=A=4NQ, AND=
&, if ACB, then AN B=A. Thus in the coin-tossing example, EN D=D.
Clearly, two sets A and B are disjoint if and only if ANB=J. If A CQ, we
denote by A° the difference 2 —A4. The set A€ is called the complement of A
in . It contains those elements of { that do not belong to A. Thus the set
D¢ in the coin-tossing example is the event “at most one head turns up in
three tosses of a coin,” and we have

D= {TTT,TTH, THT,HTT).

The set G in the monatomic gas example consists of all the points on §
outside the spherical zone G.

EXERCISE 1.1.1
(i) Construct a sample space {2 corresponding to the experiment of
throwing a die.

(i) How many elementary events are there in 27
(1ii) How many events consisting of two elementary events are there in 7

EXERCISE 1.1.2
Let the sample space consist of n elementary events.
(i) What is the number of events that consist of exactly k elementary

events in ?
(i) What is the number of all events in £?
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EXERCISE 1.13

In random sampling of families the event 4 occurs if the sampled family
has only one child and the event B occurs if the family has at least one
child. It is known that there are no families having more than n children.
Describe the elementary events and express 4 and B in terms of the
elementary events. Describe the events AU B, A°, B, B—A, and A — B.

EXERCISE 1.14

In the monatomic gas model, let the events 4 and B be given by
A={a<v!<b} and B={c<v}<d)}. Describe geometrically the events
AUB, ANnB, and (A—-B)U(B—A).

EXERCISE 1.1.5

Prove de Morgan’s law, (AUB) " =ANB; (ANB) =A°UB°".

1.2 PROBABILITY MEASURE

In the experiment of tossing a fair coin three times, we intuitively assign
the probability 3 to each of the possible eight outcomes, as all seem to us
equally likely. To the event D we assign the probability % because it
contains one-half of all possible events in . Obviously, we assign the
probability zero to the impossible event & and the probability 1 to the sure
event . To make the intuitive notion of probability mathematically
precise, we introduce a system of axioms that formalize the basic proper-
ties we expect probability to have. We describe first the set B of random
events on which the probability measure is defined. The elements of % are
subsets of © and D has the following properties:

(i) QeB.
(i) If A€% and BE, then 4 —BESD.
(i) If 4,€D,=1,2,..., is a sequence of elements of B, then U 2,4,
EP.

In particular, complements and intersections of random events are random
events. A probability measure P(-) is a function defined on the set % of
random events, which satisfies the following axioms:

Axiom 1. To every element A of B there corresponds a number P(A)
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which satisfies the inequality

0<P(A)<1.
Axiom 2. P(Q2)=1.

Axiom 3. If AjE‘:B,j= 1,2,..., is a finite or infinite sequence of disjoint
events, that is, 4,N 4= if i/, then

P( U Aj)'—‘zP(Aj).

To illustrate the axioms, we again consider the experiment of tossing a fair
coin three times. The sample space consists of eight elementary events, and
D consists of all subsets of . It is easy to see that properties (i)—(iii) are
satisfied. To each random event in % we assign the probability

number of elements in A
8

P(A)=

It is easy to verify that Axioms (1)—(3) are satisfied in this case. In the case
of the monatomic gas the elementary events have been identified with
points of the sphere S of radius (2 E/m)'/2. We expect the probability of
the event G in S to be proportional to the area of G; for example, for
G={a<v}<b}, elementary calculus shows that

2. \(3n-3)/2
(1.2.1) P(G)=cfb(l—-x2:) dx

where ¢ is a proportionality constant. Since by (2) P(S)=1, we must have

1

2F /2 i %
f(ZE//m),{Z(l—xzm/ZE)(3 M2 ax
.—( m)/

The set % of random events in S cannot be taken to be the set of a//
subsets of S, since it can be shown that there is no function P(A4) defined
on the set of all subsets 4 of S such that (1.2.1) is satisfied and (1)-(3)
hold. This is a consequence of the existence of nonmeasurable sets in S
(Halmos 1959). The set 3 is defined as the smallest set with properties
(i)-(iii) that contains all the events {a<v/<b}, where i=1,2,...,n; j=
1,2,3; and —2E/m<a<b<2E/m. Thus whenever the area of a subset 4
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of S is defined, we set

area of A

Pld)= areaof S

The computation of lim, , P(G) leads to the well-known result of
Maxwell: Assuming that the energy is proportional to the number of
particles in the gas, we set E=yn, where y is a constant independent of n;

hence
b x2m \Cn—/2
f ( - ) dx
2yn

P{la<uv}<b}= L
f(Zyn/m) (l —xzm/Zyn)O"-”/zdx

—Q@yn/m)'/?

1/2
L(22) e,
47y “

Setting y=3kT /2, we obtain Maxwell’s result:

: v _(_m A\l ek
nan:oP{a<L,l-<b}—(2WkT) fae T dx.

We call T absolute temperature and k is called Boltzmann’s constant. A
itttle more sophisticated example is that of the theory of the game of heads
and tails. The possible outcomes of this game are all the infinite sequences
of H and T. Thus the sample space §2 is the set of all sequences 4,, 4,,...,
where each 4; is either the symbol H or the symbol T. There are infinitely
many distinct sequences of this kind, and in fact, the elements of §2 cannot
even be arranged in a sequence; that is, the set { is uncountable (Kamke
1950). If we are to assign a probability measure to each outcome of
the game, it would necessarily be P({4,, A,,...})=0. For, obviously all
sequences must have the same probability, and if P({4,, 4,,...})=¢c>0,
then for any sequence of distinct outcomes A'= (A4}, 45,...}, i=1,2,...,
we have A'N A/ =; therefore, by (3),

P( U Af‘)= ZP(A/’)= §c=oo,

which contradicts (1). We therefore take the elementary events to be the
sets of sequences, k of whose places (k=1,2,...) are fixed. Clearly, the
probability of an elementary event, in which & is the number of fixed
places, is the probability of an outcome of the experiment of tossing a fair
coin k times. Thus the probability measure assigned to such an elementary
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event is 1/2%. To construct a probability measure on § that assigns the
elementary events the probability 1/2* if k places are fixed, we map 9
onto the unit interval by assigning to each sequence 4,, 4,,... the number

oo
(1.2.2) 1= 27",

i=1
where ¢,=1 if A4,=H and ¢,=0 if 4,=T. Obviously, 0<7<1. This
correspondence is not one-to-one since the sequence H,T,T,... and
T,H,H,... are mapped into the same number, namely into the number 3,
as

271= 3 27",

ne=2

The sequences that are mapped into the same numbers correspond to the
“dyadic rationals,” that is, to numbers of the form r/2°, where r and s are
positive integers. It is easy to see that the set of all such numbers can be
arranged in a sequence (how?) A=[A4', 4%,...], say (i.e., the set is counta-
ble). Since P(A’)=0 and A'NA/=D if i#j, we must have, by (3),
P(A)=0. Identifying all dyadic rationals with sequences that end with
T,T,..., we obtain a one-to-one correspondence between {2 and the
interval [0, 1]. Thus the elementary set B,={H, 4,, A,,...} is mapped onto
the interval %,l], which is the set of all numbers in the interval [0, 1]
whose first digit is 1 in their binary expansion. The event B, corresponds
to the outcome H in a single toss of a fair coin; thus we assign to B, the
probability % This probability is the length of the interval %, l] corre-
sponding to B, in the one-to-one correspondence between {2 and the
interval [0, 1]. It is now easy to see that any elementary event is mapped
onto a finite union of intervals whose end points are dyadic rationals, and
the probability of such an elementary event equals the sum of the lengths
of the dyadic intervais onto which it is mapped. It is also easy now to
construct a probability measure on §2 which is consistent with the probabil-
ity measure assigned to the elementary events., We simply assign to any
interval [a, b]C[0, 1] its length b —a and extend the definition by properties
(1)-(3) to the set b of random events (Halmos 1959). The set B of random
events in { can be described by its image in the interval [0, 1] under the
one-to-one mapping described above. The image of %, in the interval [0, 1]
is the so-called Borel set %, which is the smallest set containing all the
subintervals of [0, 1] such that 9 has the properties (i)—(iii).

Using property (3) of the probability measure, we can derive the formula

(1.2.3) P(AUB)=P(A)+P(B)—P(ANB).



8 Review of Probability Theory
Indeed,

AUB=AU[B—(ANB)]
B=[ANBJU[B—-(4ANB)]
and obviously
P=AN[B—-(4ANB)]
and
Q=[AnB]n[B—(AnB)].
Hence, by (3),
P(AUB)=P(A)+P[B—(ANB)]
and
P(B)=P(ANB)+P[B—(ANB)].

It follows that (1.2.3) holds.

EXERCISE 1.2.1 (Kac 1959)

Let H,(w) be the number of H’s in the sequence w={A4,, 4,,...} EQ in
the game of heads and tails. Using the identity

(124) lm2™" S (:)’=(2w)“”f“ e~ */2 dx,
nmee |k—n/2|<a\/—n “2e

show that

lim P{!H,,—§|<a' 'n }=(21r)_'/2f2a e ¥/ dx,

n—»00 —2a

1_'se this result to devise a test for the fanness of a coin.

EXERCISE 1.2.2

Prove (1.2.4) by using Stirling’s formula (Feller 1957)



