EPIGENETIC REGULATION IN THE NERVOUS SYSTEM

BASIC MECHANISMS AND CLINICAL IMPACT

Edited by

J. David Sweatt, Michael J. Meaney, Eric J. Nestler, and Schahram Akbarian

EPIGENETIC REGULATION IN THE NERVOUS SYSTEM

Basic Mechanisms and Clinical Impact

Edited by

J. DAVID SWEATT

McKnight Brain Institute Department of Neurobiology University of Alabama at Birmingham Birmingham, Alabama, USA

MICHAEL J. MEANEY

Departments of Psychiatry, Neurology, and Neurosurgery

Mount Sinai School of Medicine New York, New York, USA

SCHAHRAM AKBARIAN

Department of Reychiany
Friedman Brain Institute
Mount Studie School of Medicina
Nelly York, New York, U.S.

AMSTERDAM *BOSTON • NEIDELBURGS WONDON
NEW YORK • ONFORD ** THIS ** SAN DIEGO
SAN FRANCISCO • SINSAPONE HHYDNEY • TOKYO

Academic Press is an imprint of Elsevier

Academic Press is an imprint of Elsevier 32 Jamestown Road, London NW1 7BY, UK 225 Wyman Street, Waltham, MA 02451, USA 525 B Street, Suite 1800, San Diego, CA 92101-4495, USA

Copyright © 2013 Elsevier Inc. All rights reserved

Front Cover: "DNA with Methyl-Cytosine and Hydroxy-Methyl-Cytosine" J. David Sweatt, acrylic on wood panel (24 × 48), 2012

Back Cover: "DNA with Methyl-Cytosine and Hydroxy-Methyl-Cytosine – Abstraction" J. David Sweatt, acrylic on wood panel (24×48) , 2012

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means electronic, mechanical, photocopying, recording or otherwise without the prior written permission of the publisher

Permissions may be sought directly from Elsevier's Science & Technology Rights Department in Oxford, UK: phone (+44) (0) 1865 843830; fax (+44) (0) 1865 853333; email: permissions@elsevier.com. Alternatively, visit the Science and Technology Books website at www.elsevierdirect.com/rights for further information

Notice

No responsibility is assumed by the publisher for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein. Because of rapid advances in the medical sciences, in particular, independent verification of diagnoses and drug dosages should be made

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library

Library of Congress Cataloging-in-Publication Data

A catalog record for this book is available from the Library of Congress

ISBN: 978-0-12-391494-1

For information on all Academic Press publications visit our website at www.store.elsevier.com

Typeset by MPS Limited, Chennai, India www.adi-mps.com

Printed and bound in China

12 13 14 15 10 9 8 7 6 5 4 3 2 1

Working together to grow libraries in developing countries

www.elsevier.com | www.bookaid.org | www.sabre.org

ELSEVIER BOO

BOOK AID

Sabre Foundation

EPIGENETIC REGULATION IN THE NERVOUS SYSTEM

http://booksite.elsevier.com/9780123914941/

Epigenetic Regulation in the Nervous System

J. David Sweatt, Michael J. Meaney, Eric J. Nestler, and Schahram Akbarian

Resources available:

· All figures from the volume available

Preface

In a living cell, the functional definition of the human genome cannot be captured solely by its linear sequence of 3 (or 6 when diploid) billion base pairs. It is the epigenome, with highly regulated modifications of DNA cytosine and more than 100 site- and amino acid residue specific histone modifications, histone variants and other types of epigenetic markings which, in concert, define localized chromatin structures and functions, provide a molecular bridge between genes and "the environment", and orchestrate the expression of tens of thousands of transcriptional units, condensed chromatin clusters and many other features that distinguish between various cell types and development- or disease-states sharing the same nascent genome within the same subject.

Epigenetics in the nervous system, in particular, has made breath-taking advances over the course of the last 10-15 years. Initially, there were only a handful of studies, mainly focused on a single mark, DNA cytosine methylation, in the context of brain aging and development. Fast forward to the present, and the database grew to hundreds of studies, collectively indicating that epigenetic landscapes in brain maintain their highly dynamic and bi-directional regulation throughout the lifespan, and play a critical role in the mechanisms of learning, memory and, more generally, neuronal plasticity. Furthermore, a rapidly expanding repertoire of chromatin modifying drugs has been shown to exhibit an unexpectedly broad therapeutic potential for a wide range of degenerative and functional disorders of the nervous system and, furthermore, epigenetic dysregulation at selected loci, or even genome-wide, is thought to play a key role for the molecular pathology of major psychiatric disorders (including some cases diagnosed with autism, schizophrenia and depression) or maladaptive mechanisms associated with addiction and substance dependence and abuse.

Given these recent advances, there is clearly a need for a book that addresses molecular, cellular, behavioral and clinical roles for epigenetic mechanisms in the nervous system. It appears that the time is ripe to introduce a foundational book that will be broadly relevant to a wide variety of emerging research programs beginning to investigate the role of epigenetics in neural and CNS function and dysfunction. We hope that this book will capture and communicate to the interested reader some of the excitement that has gripped the neuroepigenetics field for the last several years, both from the basic and clinical science perspective.

Finally, the Editors would like to express their gratitude towards the various other authors and co-authors of these book chapters, without whom the compilation of these various chapters would not have been possible. We are also indebted to the most valuable support of the Elsevier editorial staff, including Kristi Anderson, and the anonymous reviewers whose valuable comments helped greatly to improve the quality of this book.

J. David Sweatt Michael J. Meaney Eric J. Nestler Schahram Akbarian

List of Contributors

- **Ted Abel** Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Schahram Akbarian Department of Psychiatry, Departments of Psychiatry and Neuroscience, Friedman Brain Institute, Mount Sinai School of Medicine, New York, New York and Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Rahul Bharadwaj Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Morgan Bridi Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Christian Caldji Sackler Program for Epigenetics Psychobiology and Departments of Psychiatry and Neurology & Neurosurgery, McGill University, Montreal, Canada
- **Frances A. Champagne** Columbia University, Department of Psychology, New York, USA
- J.DavidSweatt McKnightBrainInstitute,Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Jeremy J. Day Department of Neurobiology and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Josie C. Diorio Sackler Program for Epigenetics Psychobiology and Departments of Psychiatry and Neurology & Neurosurgery, McGill University, Montreal, Canada
- Sabine Dhir Sackler Program for Epigenetics Psychobiology and Departments of Psychiatry and Neurology & Neurosurgery, McGill University, Montreal, Canada

- Daniel M. Fass Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA; Center for Human Genetic Research, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Jian Feng Fishberg Department of Neuroscience and Friedman Brain Institute, Mount Sinai School of Medicine, New York, New York, USA
- Fred H. Gage Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, California, USA
- Junjie U. Guo Institute for Cell Engineering, Department of Neurology, The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Stephen J. Haggarty Center for Human Genetic Research, Massachusetts General Hospital, Departments of Neurology and Psychiatry, Harvard Medical School, Boston, Massachusetts; Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Jenny Hsieh Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Janine M. LaSalle Medical Microbiology and Immunology, Genome Center, Medical Institute of Neurodevelopmental Disorders, University of California, Davis School of Medicine, Davis, California, USA
- Quan Lin Department of Psychiatry and Behavioral Sciences; Intellectual Development and Disabilities Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, USA
- **Isabelle M. Mansuy** Medical Faculty of the University of Zurich and Department of

- Health Science and Technology, Swiss Federal Institute of Technology, Zurich, Switzerland
- Rahia Mashoodh Columbia University, Department of Psychology, New York, USA
- Michael J. McConnell Department of Biochemistry and Molecular Genetics, Center for Brain Immunology and Glia, School of Medicine, University of Virginia, Charlottesville, Virginia, USA
- Michael J. Meaney Departments of Psychiatry, Neurology, and Neurosurgery, Douglas Institute, McGill University, Montreal, Quebec, Canada
- Guo-li Ming Institute for Cell Engineering, Department of Neurology, The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Eric J. Nestler Department of Neuroscience, Friedman Brain Institute, Mount Sinai School of Medicine, New York, New York USA
- Alexi Nott Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Cyril J. Peter Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Weston T. Powell Medical Microbiology and Immunology, Genome Center, Medical Institute of Neurodevelopmental Disorders, University of California, Davis School of Medicine, Davis, California, USA

- Alfred J. Robison Fishberg Department of Neuroscience and Friedman Brain Institute, Mount Sinai School of Medicine, New York, USA
- Hongjun Song Institute for Cell Engineering, Department of Neurology, The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Yi E. Sun Department of Psychiatry and Behavioral Sciences; Intellectual Development and Disabilities Research Center, David Geffen School of Medicine; Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California, USA; Stem Cell Translational Research Center, Shanghai Tongji Hospital, Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai, China
- **Gustavo Turecki** Sackler Program for Epigenetics Psychobiology and Departments of Psychiatry and Neurology & Neurosurgery, McGill University, Montreal, Quebec, Canada
- Li-Huei Tsai Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Howard Hughes Medical Institute, Cambridge, Massachusetts; Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Tie Yuan Zhang Sackler Program for Epigenetics Psychobiology and Departments of Psychiatry and Neurology & Neurosurgery, McGill University, Montreal, Quebec, Canada

Contents

Preface ix List of Contributors xi

1. An Overview of the Molecular Basis of Epigenetics 3

J. DAVID SWEATT, ERIC J. NESTLER, MICHAEL J. MEANEY AND SCHAHRAM AKBARIAN

Introduction 3 DNA Modifications 8 Histone Modifications 13 Non-Coding RNAs 18 Non-Genic DNA 19 Prion-Based Epigenetic Inheritance 20 Epigenome Organization and Higher Order Chromatin Structures 20 Roles for Epigenetic Mechanisms in the Nervous System 20 Epigenetic Mechanisms in Nervous System Development 21 Neurogenesis in the Adult CNS 22 Circadian Rhythms 23 Persisting Effects of Life Experience: Nurturing and Transgenerational Effects 23 Epigenetic Mechanisms and Cellular Information Storage 24 Human Cognition and Cognitive Disorders 25 Summary - Active Regulation of Epigenetic Marks in the Nervous System 27 References 27

Histone Modifications in the Nervous System and Neuropsychiatric Disorders 35

MORGAN BRIDI AND TED ABEL

Introduction 35
The Histone Code: Complex and Combinatorial 36
Other Epigenetic Mechanisms 39
Summary 41

The Histone Code in Learning, Memory and Synaptic Plasticity 42
The Histone Code in Neurological and Neuropsychiatric Disorders 48
Neurodevelopmental Disorders and Intellectual Disability 48
Mood Disorders 55
Summary 59
Acknowledgments 60
References 60

Active DNA Demethylation and Hydroxymethylcytosine 69

JUNJIE U. GUO, GUO-LI MING AND HONGJUN SONG

Introduction 69
Regulation of Neuronal Gene Expression by
Active DNA Demethylation 70
Active DNA Demethylation Mediated by
DNA Repair 72
TET Proteins and an Oxidative Demethylation
Pathway 73
Functions of TET Proteins and 5hmC Beyond
DNA Demethylation 77
Role of Active DNA Demethylation in
Neurological Disorders? 78
Concluding Remarks 79
References 79

4. The Epigenetics of Parental Effects 85

TIE YUAN ZHANG, CHRISTIAN CALDJI, JOSIE C. DIORIO, SABINE DHIR, GUSTAVO TURECKI AND MICHAEL J. MEANEY

Overview 85
Parent–Offspring Interactions and the Mental
Health of the Offspring 86
Evolutionary Biology of Parental Signaling 88

The Biology of Parent Influences 90
Molecular Transduction of Maternal Signals 92
The Epigenetics of Parental Effects 95
Developmental Regulation of Hippocampal
GR Expression in Humans 100
Reversibility of DNA Methylation 102
Non-Genomic Transmission of Traits from
Parent to Offspring 104
Conclusions 107
References 108

5. Epigenetic Mechanisms in Learning and Memory 121

JEREMY J. DAY AND J. DAVID SWEATT

Introduction 121 Epigenetic Marks in the Nervous System and their Roles in Learning and Memory 122 How Does the Epigenetic Code Manifest as a Functional Change? 138 Epigenetically Based Disorders of Cognition and Novel Therapeutic Targets 144 Summary and Conclusions for Parts 1–3 of the Chapter 149 A Theoretical Framework for Epigenetic Mechanisms in Memory Formation and Storage 151 Summary and Conclusions - Cognitive Epigenetics 160 Acknowledgments 162 References 162

6. Drug Addiction and Reward 173 ALFRED J. ROBISON, JIAN FENG AND

ERIC I. NESTLER

Introduction 173
Drug Addiction and Gene Transcription 174
Drugs and Neuronal Activation 179
Epigenetics of Addiction 180
Future Directions 188
Acknowledgments 190
References 190

7. The Mind and its Nucleosomes – Chromatin (dys) Regulation in Major Psychiatric Disease 197

RAHUL BHARADWAJ, CYRIL J. PETER AND SCHAHRAM AKBARIAN

Introductory Remarks 197
Epigenetics in Psychiatry – Why Bother? 199
Epigenetic Alterations in Schizophrenia and Autism 206
Epigenetic Alterations in Mood and Anxiety Disorders, Including PTSD 210
Synopsis and Outlook 213
Acknowledgments 214
References 214

8. HDAC Inhibitors as Novel Therapeutics in Aging and Alzheimer's Disease 225

ALEXI NOTT, DANIEL M. FASS, STEPHEN J. HAGGARTY AND LI-HUEI TSAI

Aging, Alzheimer's Disease, and Cognitive Decline 225 Gene Expression Dysregulation Associated with Age-Dependent Memory Impairment 226 Histone Acetylation Marks Associated with Memory 227 HDAC Proteins and Cognition 229 Classes of HDAC Inhibitors 230 HDAC Inhibitor Specificities 231 HDAC Inhibitor Brain Pharmacokinetics 232 HDAC Inhibitors and Histone Acetylation in Neurons 233 HDAC Inhibitors and Gene Transcription in Neurons 233 HDAC Inhibitors and Memory Formation 236 Non-Histone Targets of HDAC Inhibitors 242 Future HDAC Inhibitor Drug Design 242 Acknowledgments 244 References 244

CONTENTS vii

9. miRNAs and Neurodevelopmental Disorders 251

QUAN LIN AND YI E. SUN

Introduction 251
miRNA Biogenesis 252
miRNA Regulation of Cell Fates and Migration
in the Developing Brain 253
miRNA Regulation of Neural Plasticity 257
Concluding Remarks 259
References 260

10. Imprinting in the CNS and Neurodevelopmental Disorders 267

WESTON T. POWELL AND JANINE M. LASALLE

Imprinting and Neurodevelopmental Disorders 267
Genomic Imprinting 268
Mechanisms of Imprinting 268
Maternal and Paternal Genomes in
Development 271
Neurodevelopmental Disorders of Imprinted
Loci 272
Other Imprinted Genes and CNS Function 274
Conclusions 275
References 275

11. Neuronal Genomic and Epigenetic Diversity 281

MICHAEL J. McCONNELL AND FRED H. GAGE

Introduction 281
Mobile Elements in Mammalian Genomes 282
Host Defense 284
Somatic Mobile Element Activity 285
Genome Diversity Among Neurons 288
Additional Genomic Diversity Can Follow from Retrotransposon Activity 290
Nature, Nurture and Neuronal Genomes 291
How Do We Study Epigenetic Interactions with Neuronal Mosaicism? 291
Concluding Remarks 292
Acknowledgments 293
References 293

12. Adult Neurogenesis 301 JENNY HSIEH AND HONGJUN SONG

Introduction 301 Epigenetic Control of NSCs: A Few Guiding Principles 302 Histone Modification 304 DNA Methylation 304 Regulatory Non-Coding RNAs and Chromatin Remodeling 305 Epigenetic Regulation of Adult Neurogenesis 306 NSC Self-Renewal and Maintenance of Ouiescence 308 Proliferation of Transit-Amplifying Progenitors 309 Neuronal vs Glial Lineage Specification of Adult NSCs 310 Differentiation, Survival, and Maturation of Adult-Generated Neurons 311 Epigenetics, iPSCs, and Strategies for Neural Repair 312 Conclusions and Future Perspectives 314 References 316

13. Transgenerational Inheritance in Mammals 323

ISABELLE M. MANSUY, RAHIA MASHOODH AND FRANCES A. CHAMPAGNE

Introduction 323 Transgenerational Effects: Epidemiological and Laboratory Studies 324 Epigenetic Modifications and the Inheritance of Specific Traits 327 Transfer of Epigenetic Variation Across Generations 329 Germline Transmission of Paternal Effects 329 Experience-Dependent Transfer through Females 332 Dissociating Paternal and Maternal Influences on Subsequent Generations 333 Future Directions in the Study of Epigenetics and Inheritance 334 Acknowledgments 334 References 334

viii CONTENTS

14. Epigenetics: Defining the Frontiers of Genomic Function 341

> MICHAEL J. MEANEY, SCHAHRAM AKBARIAN, ERIC J. NESTLER AND J. DAVID SWEATT

Epigenetics and Transcription: Cause or Consequence? 343

Implications of Epigenetics for Health Sciences 347 Conclusions 350 References 350

Index 355

 $\it "Histone Subunit Exchange"$ J. David Sweatt, acrylic on canvas (40 x 30), 2012

1

An Overview of the Molecular Basis of Epigenetics

J. David Sweatt, ¹ Eric J. Nestler, ² Michael J. Meaney ³ and Schahram Akbarian ⁴

¹McKnight Brain Institute, Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
 ²Fishberg Department of Neuroscience, Friedman Brain Institute, Mount Sinai School of Medicine, New York, New York, USA
 ³Departments of Psychiatry, Neurology, and Neurosurgery, Douglas Institute McGill University, Montreal, Quebec, Canada
 ⁴Department of Psychiatry, Friedman Brain Institute, Mount Sinai School of Medicine, New York, New York, USA

INTRODUCTION

The role of epigenetic molecular mechanisms in regulation of CNS function is one of the most exciting areas of contemporary molecular neuroscience. This emerging field, variously referred to by neologisms such as *Behavioral Epigenetics* or *Neuroepigenetics*, ^{1,2} is being driven by shifts in our understanding of several of the fundamental concepts of traditional epigenetics and cognitive neurobiology. These changes in viewpoint can be categorized in a broad fashion into two domains: first, how does neuroepigenetics differ from traditionally defined developmental epigenetics; and second, what is the impact of epigenetics on the historical debate of "Nature versus Nurture"?

After a brief introduction to the basics of epigenetics at the molecular level in this chapter, this book overall will describe the current understanding of the roles of epigenetic processes at the molecular and cellular level, their impact on neural development and behavior, and the potential roles of these mechanisms in neurological and psychiatric disorders. Our goal is for the book to be the first unified synthesis of information concerning the role of epigenetic

mechanisms in nervous system function. This chapter is an introduction to the overall contents of the book, which spans the range of topics including molecular epigenetics, development, cellular physiology and biochemistry, synaptic and neural plasticity, and behavioral models, and also incorporates chapters on epigenetically based disorders of the CNS.

One objective of the book is to begin to embrace the complexity of epigenetic mechanisms in the context of behavioral change. This book represents a critical first step toward synthesizing the complex puzzle of the molecular basis of behavioral plasticity and neural epigenetics.

What is Epigenetics?

Epigenetics and its associated terminology have several different connotations, and specific terms need to be defined before we can discuss them in detail. We will start by defining the *genome* as DNA and the nucleotide sequence that it encodes. In contrast, the *epigenome* is the sum of both histone-associated chromatin assembly and the pattern of DNA methylation, thereby defining the moldings and three-dimensional structure of the genomic material inside the cell nucleus and providing a "molecular bridge" between genes and the environment. Despite these precise structural definitions for genome and epigenome, three definitions for the term "epigenetic" are currently in use in the literature.

The broadest definition includes the transmission and perpetuation of information that is not based on the sequence of DNA, for example, perpetuation of cellular phenotype through meiosis or mitosis. This process is not restricted to DNA-based transmission and can also be protein-based. This definition is broadly used in the yeast literature, as one example, wherein phenotypes that can be inherited by daughter cells are perpetuated past cell division using protein-based (e.g. prion-like) mechanisms.^{3–5} Whether such mechanisms operate in mammalian neurons is a subject of current investigation.

Developmental biologists and cancer researchers tend to utilize a second definition for epigenetic: meiotically and mitotically heritable changes in gene expression that are not coded in the DNA sequence itself. The altered patterns of gene expression can occur through the impact on gene transcription of several mechanisms that are based on DNA, RNA, or proteins⁶ (see below). The principal criterion for this definition of epigenetic is heritability. It is worth noting that the issue of heritability is fundamental to developmental biology where a major issue is the fidelity of cellular phenotype across proliferation that is critical for tissue differentiation.

A third definition posits that epigenetics is the mechanism for stable maintenance of gene expression changes that involves physically "marking" DNA or its associated proteins, which allow genotypically identical cells (such as all cells in an individual human) to be phenotypically distinct (e.g. a neuron is phenotypically distinct from a liver cell). The molecular basis for this type of change in DNA or chromatin structure in the nervous system is the focus of this chapter.^{7–9} By this definition, the regulation of chromatin structure and attendant DNA chemical modification is equivalent to epigenetic regulation.

The common theme that is shared across all of the definitions is that epigenetics is a mechanism for storing and perpetuating a "memory" at the cellular level. The catalyzing phenomenon that has focused attention on these mechanisms is cell division. It is clear from