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Preface

Electrons in molecules . . . Both objects—electron and molecule—have a long,
rich, and complex history. Both words began to be used as elusive concepts
in the nineteenth century before gaining well-established scientific status at
the turn of the twentieth century. Several tens of years of common endeavour,
failures, and achievements by chemists and physicists, based on experimental
and theoretical work, were necessary to reach consensus. The word ‘electron’
(from the Greek élektron, amber) was proposed by Stoney in 1894, to name the
elementary negative charge of the particle, whereas ‘molecule’ comes from the
diminutive of the Latin moles (mass), introduced in modern Latin by Gassendi
as molecula. The emergence of the scientific concept of ‘molecule’, and its
clear distinction from atoms and equivalents, was the result of big controver-
sies (pros and cons in Karlsruhe Congress, 1860), but laid the foundations
of the basic understanding of chemistry, molecular chemistry, and associated
industrial synthetic processes. It opened the door to the understanding of com-
plex, highly organized, and biological matter. Elucidation of the nature of the
electron as a corpuscle and as a wave, and its role in atoms and molecules,
gave rise to quantum mechanics. Today, everyone knows that molecules are
quantum objects built from atoms sharing some of their electrons to establish
chemical bonds.

Electrons in molecules . . . The title can also be read as ‘understanding
the electronic structure and electronic properties of molecules’. Electrons are
dividing their roles in a molecular entity: some ensure the chemical bonds and
allow the stability of the molecules, while others are less bound to the atomic
core and provide the molecules with their fancy properties—magnetic, elec-
trical, photo-physical, colour, luminescence—allowing their use in molecular
electronics, nanosciences, and so on . . . This book is based on the simple
idea that such apparently different properties present a profound unity, rely-
ing on basic concepts of quantum mechanics and symmetry. This conclusion
emerged from informal discussions which we had many years ago with numer-
ous colleagues, and was fed by our teaching experiences at undergraduate and
graduate levels.

The backbone of the book was designed accordingly. Chapter 1 briefly
presents the basic quantum concepts as a common introduction to the broad
domain encompassed by the properties. The molecular orbital approach is
the red thread throughout the book, and its advantages and its limitations
are carefully discussed. We then treat consecutively the magnetic properties
(Chapter 2, ‘The localized electron’), electron transfer and electrical properties
(Chapter 3, ‘The moving electron’), the photo-physical properties (Chapter 4,
‘The excited electron’), and finally, molecular electronics (Chapter 5, ‘The
mastered electron’). So doing, we introduce the specific aspects of each of the
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subjects, and try to enlighten them by returning systematically to the basic con-
cepts. The goal is to better understand each topic and to show the transversal
connections between many of them.

The book’s content is shaped by a few specific features. First, it could be
important to specify what this book is not: it is not a compilation of recent
research results. There are many reviews in the specialized literature, which
periodically updates the huge amount of data and results associated with the
particular topics evoked here. We did not even consider the idea of being
exhaustive in a given field. Each of the chapters could have been, and in some
cases have already been, the subject of several books.

Second, we concentrate on concepts and use as little mathematics as pos-
sible. We try to give as much physical and chemical meaning as possible to
the equations. We try to explain the logic and goal of calculations—the price
being to skip some intermediate developments, which are left to the reader.

Third, we stress the importance of interdisciplinarity: to tackle ambitious
challenges, we think deeply that in this domain one has to mix together chem-
istry, physics, and materials science. The book performs constant trips between
these areas and between theory and experiment. Such a step appears com-
pulsory to achieve the breakthroughs, allowing the progress of knowledge and
the realization of practically useful materials and devices. Furthermore, in the
recently popularized field of nanosciences, the division between physics and
chemistry tends to vanish. But the round-trip ideas between chemist and phys-
icist, between theoretician and experimentalist, are essential for adapting the
molecule(s) to the instrument, or vice versa, and to be able finally to explore
and demonstrate new phenomena.

Fourth, the book is fed by our lifelong experience of molecular chemists,
synthesizing molecules and molecular assemblies specially designed to present
given physical properties. A few quantum concepts constitute the background.
Chemical synthesis provides the planned molecules (most often conceived
after discussion to fit the needs of the physicist, the machine, or the demon-
stration). Beautiful physics experiments follow, with innovative setups and
incredible enhanced sensitivities. Our book describes such experiments and
their results, but stresses the contribution of molecular chemistry, which has
sometimes been overlooked. It is indeed important to realize that this dis-
cipline has reached such a state of maturity that it can be considered as the
science of elaborating three-dimensional objects of sub-nanometre size by
rational design, with the possibility of predicting and fine-tuning their proper-
ties. A long time has passed since discoveries were made because a molecule
was available on the shelf. Now, more and more, they are extensively designed
before, and for, the experiment. The book is rich in many such examples. And
when it happens that unexpected molecules arise, the curious scientist is always
ready to foresee how they can be exploited to initiate new lines of research.

A fifth point is the importance of technology and instrumentation: huge pro-
gress has been made possible only because new equipment has been devised,
such as the STM and its multiple variants, or the squid and its miniaturized
evolutions. The race towards single-molecule properties, as opposed to the
study of statistical ensembles, is now a strong motivation of research in all
the fields covered in the book, as shown in the last chapter.
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Such integrated content was conceived for an audience of students in chem-
istry, physics, and materials sciences, having a preliminary basic knowledge
of the theory of symmetry and quantum mechanics. We taught most of the
content of the book at undergraduate and graduate levels in chemistry and
materials science courses in various places, French or foreign (European,
Asian, and American) universities or French ‘grandes écoles’. Our goal is to
provide fundamental knowledge and, above all, a solid understanding not only
to beginners to boost their curiosity and creativity to design and obtain new
materials with exciting new electronic properties, but also to already special-
ized researchers or engineers, to enlarge their vision to complementary fields
and favour cross-fertilizing of other disciplines. We would always appreciate
remarks and suggestions from our readers.”

The content of our lectures varied systematically from one year to another
to follow scientific trends and to integrate remarks and suggestions from our
students and from our colleagues in neighbouring specialities. We are grateful
to them. We also benefited from passionate discussions with coworkers and
colleagues in our respective laboratories: Centre d’Elaboration de Matériaux
et d’Etudes Structurales, CEMES (J.-P.L.) at Université Paul Sabatier in
Toulouse, and Chimie Inorganique et Matériaux Moléculaires, CIM2 (M.V.) at
Université Pierre et Marie Curie in Paris—both units of the Centre National de
la Recherche Scientifique, the French institution supporting scientific research.
Our colleagues will recognize their work, and fingerprints, here and there.
Many thanks!

Thus, starting from our initial project, such exchanges and experiences trans-
formed the book and its integrated content from principles to applications,
resulting in a volume which, it appears, is unique in the literature at this level.

Our final word is directed to our families: our wives, Marie-Hélene and
Jacqueline, and our daughters, sons, and grand-children, who endured, and
sometimes accepted with incredulous smiles, the too long gestation of this
volume.

Jean-Pierre Launay
Michel Verdaguer

Cordon, Escalquens, Palaiseau, Paris, Toulouse
September 2013
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Basic concepts

In this chapter we establish, in a progressive way, how to describe the quantum
properties of the constituents of matter—atoms, molecules, and extended
molecular solids—with an emphasis on the behaviour of electrons, starting
from first principles. Since the achievements of quantum mechanics, this step
is in principle feasible. In this manner, Paul A. M. Dirac wrote: ‘The funda-
mental physical laws necessary to the mathematical theory of most parts of the
physics and the whole of chemistry are completely known, and the difficulty is
only that the exact applications of these laws lead to equations too complex to
be solved exactly.’

It is true that the equation named after Schrodinger, under its stationary (1.1)
or time-dependent (1.2) forms

HY, = E, ¥, (1.1)
v

ih" = flw (1.2)
at

allows theoretical determination of the eigenwavefunctions W, and the
eigenenergies E, which define the system and its change with time. In these
formulae, H is an operator which operates on the wavefunction W, 1 is the
complex number i> = —1, h is the Planck constant, and the ;)3—[ operator is the
partial derivative as a function of time t.

The ‘only’ difficulty, following Dirac, is that the operator must take
into account all the interactions—in particular, the interactions between
electrons—but we are unable to write them analytically in an exact way, two
thirds of a century after Dirac. To solve the problem, it is necessary to use some
approximations. It will be the purpose of the first part of this book to introduce
some models useful to the description of the structure and the electronic struc-
ture of molecules and solids. These models will then be used to forecast the
properties.

It is then possible to understand that the approximations realized, and the
predictions made from them, should be compared in a systematic way to
the experiments, source, and criterion of any model: the agreement model-
forecasting experiment leads us to ascertain the validity of the model and
presents the possibility of its safe use in a chosen experimental domain.




