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ABSOLUTE MEASURABLE SPACES

Absolute measurable space and absolute null space are very old topological notions,
developed from descriptive set theory, topology, Borel measure theory and analysis.
This monograph systematically develops and returns to the topological and
geometrical origins of these notions. Motivating the development of the exposition
are the action of the group of homeomorphisms of a space on Borel measures, the
Oxtoby—Ulam theorem on Lebesgue-like measures on the unit cube, and the
extensions of this theorem to many other topological spaces. Existence of
uncountable absolute null space, extension of the Purves theorem, and recent
advances on homeomorphic Borel probability measures on the Cantor space are
among the many topics discussed. A brief discussion of set-theoretic results on
absolute null space is also given.

A four-part appendix aids the reader with topological dimension theory,
Hausdorff measure and Hausdorff dimension, and geometric measure theory. The
exposition will suit researchers and graduate students of real analysis, set theory and
measure theory.

Toco NisuiuUR A is Professor Emeritus at Wayne State University, Detroit, and Asso-
ciate Fellow in Mathematics at Dickinson College, Pennsylvania.



Preface

This book is about absolute measurable spaces. What is an absolute measurable space
and why study them?

To answer the first question, an absolute measurable space, simply put, is a sep-
arable metrizable space X with the property that every topological embedding of X
into any separable metrizable space Y results in a set that is u-measurable for every
continuous, complete, finite Borel measure w on Y. Of course, only Borel measures
are considered since the topology of ¥ must play a role in the definition.

Foran answer to the second question, observe that the notion of absolute measurable
space is a topological one in the spirit of many other notions of “absolute” such as
absolute Borel space, absolute G5 space, absolute retract and many more. As the
definition is topological, one is led to many topological questions about such spaces.
Even more there are many possible geometric questions about such spaces upon
assigning a metric to the space. Obviously, there is also a notion of “absolute null
space”; these spaces are those absolute measurable spaces for which all topological
copies have p measure equal to 0. Absolute null spaces are often called “universal
measure zero sets” and have been extensively studied. The same topological and
geometric questions can be investigated for absolute null spaces. It is well-known
that absolute Borel spaces are absolute measurable spaces. More generally, so are
analytic and co-analytic spaces. Many topological and geometric questions have
already been investigated in the literature for absolute Borel spaces and analytic
spaces. The challenge is to prove or disprove analogues of these known results in the
context of absolute measurable spaces.

It is clear that absolute measurable spaces are invariant under Borel isomorphism
(Borel measurable bijection whose inverse is also Borel measurable). Consequently,
each absolute measurable space will correspond to an absolute measurable subspace
of the real line R. It would be tempting to investigate only absolute measur-
able spaces contained in R, which has been extensively done. This would be
fine if one is interested only in, say, measure theoretic or set theoretic proper-
ties of absolute measurable spaces, but clearly inadequate if one is interested in
topological or geometric structures since they may not be preserved by Borel iso-
morphisms. The emphasis of the book is on topological and geometric properties
associated with absolute measurable spaces. Homeomorphisms will be empha-
sized for topological structures. For geometric structures, one must have a metric
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assigned to the separable metrizable space — bi-Lipschitzian maps will replace
homeomorphisms.

There is a second notion called “universally measurable sets.” This notion fixes a
space X and considers the collection of all subsets of X' that are pw-measurable for
every continuous, complete, finite Borel measure p on X. Obviously a subset of
X that is an absolute measurable space is a universally measurable set in X. But a
universally measurable set in a space X need not be an absolute measurable space —
indeed, for a non-Lebesgue measurable set X of R, the set X itself is a universally
measurable set in X that is not an absolute measurable space. It is easily seen that X
is an absolute measurable space if and only if every universally measurable set of X
is an absolute measurable space.

An extensive literature exists concerning the notions of absolute measurable space
and universally measurable set. The 1982 survey article [18], written by J. B. Brown
and G. V. Cox, is devoted to a large number of classes of “singular” spaces among
which is the class of absolute null spaces. Their article is essentially a broad rang-
ing summary of the results up to that time and its coverage is so ambitious that a
systematic development from the basics of real analysis and topology has not been
presented. There are two other survey articles that are devoted to set theoretic results
on certain singular sets. From the set theoretic point of view only subsets of the real
line needed to be considered. The first article is a 1984 survey about such subsets
by A. W. Miller [110] and the second is his 1991 update [111]. Absolute measur-
able spaces and absolute null spaces have appeared also in probability theory — that
is, probability theory based on abstract measurable spaces (X,2) in which met-
rics are induced on X by imposing conditions on the o-algebra 21 of measurable
sets. Obviously this approach to the notion of absolute measurable space concen-
trates on probability concepts and does not investigate topological and geometric
properties. In 1984, R. M. Shortt investigated metric properties from the probabil-
ity approach in [139] (announced in 1982 [138]). Also in non-book form are two
articles that appeared much earlier in 1937; one is a commentary by S. Braun and
E. Szpilrajn in collaboration with K. Kuratowski that appeared in the “Annexe” [15]
to the new series of the Fundamenta Mathematicae and the other is a fundamen-
tal one by Szpilrajn-Marczewski [152] that contains a development of the notions
of absolute measurable space and universally measurable subsets of a metric space
with applications to singular sets. Years have passed since the two articles were
written.

The book sets aside many singular sets whose definitions depend on a chosen met-
ric; fortunately, the definition of the Lebesgue measure on the real line depends only
on the arithmetic structure of the real number system and is metric independent. This
setting aside of metric-dependent singular set theory permits a systematic develop-
ment, beginning with the basics of topology and analysis, of absolute measurable
space and universally measurable sets in a separable metrizable space. Two themes
will appear. One deals with the question of the possibility of strengthening theorems
by replacing absolute Borel spaces in the hypothesis of known theorems with abso-
lute measurable spaces. The other is an investigation of the possibility of extending
topological properties or geometric properties of universally measurable sets in R to
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absolute measurable spaces X other than R. The first question is complicated by the
following unresolved set theoretic question [110] due to R. D. Mauldin. Note that
there are ¢ Borel sets in R.

(Mauldin) What is the cardinality of the collection of all absolute measurable subspaces of the
real line R? In particular, are there always more than ¢ absolute measurable subspaces of R?

The cardinality of absolute null spaces plays a role in Mauldin’s question since an
absolute measurable space is not necessarily the symmetric difference of an absolute
Borel space and an absolute null space.

There are six chapters plus a four-part appendix. The first chapter is a system-
atic development of the notions of absolute measurable space and absolute null
space. Clearly countable separable metrizable spaces are always absolute null spaces.
Solutions of the question of the existence, under the usual axioms of set theory, of
uncountable absolute null spaces are presented.

The second chapter is a systematic development of the notion of universally mea-
surable sets in a separable metrizable space X. The concept of positive measures
(loosely speaking, (U) > 0 whenever U is a nonempty open set) is introduced.
This concept leads naturally to the operation called positive closure which is a topo-
logical invariant. Of particular interest is the example [0, 1] and HOMEO([0, 1]),
the group of all homeomorphisms of [0, 1]. It is a classical result that the collection
of all universally measurable sets in [0, 1] is generated by the Lebesgue measure A
on [0, 1] and HOMEO([0, 11). Even more, it is known that the collection of all pos-
itive, continuous, complete, finite Borel measures on [0, 1] is generated by A and
HOMEQ([0, 1]).

The topological project of replacing the space [0, 1] with other absolute measurable
spaces is the focus of the third chapter. This project, which addresses the second of the
two above mentioned classical results, leads naturally to the Oxtoby—Ulam theorem
and its many generalizations. The Oxtoby—Ulam theorem does not generalize to the
Cantor space {0, 1}N. F ortunately there is a Radon—Nikodym derivative version of the
Oxtoby—Ulam theorem which includes the Cantor space and allows the introduction
of analysis into the book.

There are many results in analysis on functions f: R — R in the context of uni-
versally measurable sets in R. Chapter 4 is devoted to the question of the replacement
of the domain or the range of / by absolute measurable spaces. The usual approach
of using Borel isomorphisms does not necessarily apply to the task at hand. But the
results of Chapter 3 can be applied.

Chapter 5 is devoted to geometric properties of universally measurable sets in R” —
in particular, the Hausdorff measure and Hausdorff dimension of absolute null spaces.
Results, due to O. Zindulka, that sharpen the classical inequalities between Hausdorff
dimension and topological dimension form the main part of the chapter.

Finally, Chapter 6 is a short discussion of the set theoretic aspect of absolute
measurable spaces. The literature on this aspect is quite extensive. Only a brief survey
is given of the use of the continuum hypothesis and the Martin axiom in the book. Of
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particular interest is the topological dimension of absolute null spaces. Surprisingly,
the result, due to Zindulka, depends on set axioms.

Appendix A collects together the needed descriptive set theoretic results and mea-
sure theoretic results that are used in the book. Developing notational consistency is
also an objective of this part. A proof of the Purves theorem is also presented since it is
extended to include universally measurable sets and universally null sets in Chapter 2.

Appendix B is a brief development of universally measurable sets and univer-
sally null sets from the measure theoretic and probability theoretic point of view,
which reverses our “Borel sets lead to probability measures” to “probability mea-
sures lead to Borel sets.” This reversal places emphasis on Borel isomorphism and not
on homeomorphism; consequently, topological and geometrical questions are not of
interest here.

Appendix C concerns Cantor spaces (metrizable spaces that are nonempty, com-
pact, perfect and totally disconnected). Cantor spaces have many realizations, for
example, £, where £ is a finite set with card(k) > 1. The homeomorphism equiv-
alence classes of positive, continuous, complete Borel probability measures on a
topological Cantor space are not very well understood. Even the Bernoulli measures
on k “ are not completely understood. Extensive investigations by many authors have
been made for card(k) = 2. In this case a weaker equivalence relation introduces
a connection to polynomials with coefficients in Z. These polynomials are special
Bernstein polynomials found in classical approximation theory. Recent results of
R. Dougherty, R. D. Mauldin and A. Yingst [47] and T. D. Austin [6] are discussed
and several examples from the earlier literature are given. The E. Akin approach
of introducing topological linear order into the discussion of Cantor spaces is also
included.

Finally, Appendix D is a brief survey of Hausdorff measure, Hausdorff dimen-
sion, and topological dimension. These concepts are very important ones in the
book. Zindulka’s new proof of the classical relationship between the Hausdorff and
topological dimensions is given.

The book is somewhat self-contained; many complete proofs are provided to
encourage further investigation of absolute measurable spaces.
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The absolute property

Ameasure space M(X, ) isatriple (X , W, IN(X, u)) , Where p is a countably additive,
nonnegative, extended real-valued function whose domain is the o -algebra 9 (X, )
of subsets of a set X and satisfies the usual requirements. A subset M of X is said to
be p-measurable if M is a member of the o -algebra 9 (X, w).

For a separable metrizable space X, denote the collection of all Borel sets of X'
by B(X). A measure space M(X, w) is said to be Borel if B(X) C M(X, n), and if
M € 9M(X, ) then there is a Borel set B of X such that M € B and u(B) = u(M).!
Note that if £(M) < o0, then there are Borel sets 4 and B of X suchthatA C M C B
and u(B \ A) = 0.

Certain collections of measure spaces will be referred to often — for convenience,
two of them will be defined now.

NotaTion 1.1 (MEAS; MEASTM©)  The collection of all complete, o-finite Borel
measure spaces M(X, ) on all separable metrizable spaces X will be denoted by
MEAS. The subcollection of MEAS consisting of all such measures that are finite
will be denoted by MEASfinite 2

In the spirit of absolute Borel space, the notion of absolute measurable space will
be defined in terms of p-measurability with respect to all Borel measure spaces
M(Y, u) in the collection MEAS. After the notion of absolute measurable space has
been developed, the notion of absolute 0-measure space — more commonly known as
absolute null space —is defined and developed. Two early solutions to the question of
the existence of uncountable absolute null spaces are presented. They use the notion
of m-convergence introduced by F. Hausdorff [73]. A more recent example, due to
E. Grzegorek [68], that has other properties is also developed. The theorems due to
S. Plewik [127, Lemma] and to 1. Rectaw [130] will conclude the discussion of
existence.

1.1. Absolute measurable spaces

DeFINITION 1.2, Let X be a separable metrizable space. Then X is called an abso-
lute measurable space if, for every Borel measure space M(Y, ) in MEAS, it is

I Such measures are often called regular Borel measures. We have dropped the modifier regular for
convenience.
2 See also equations (A.4) and (A.5) on page 187 of Appendix A.
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true that every topological copy M of X that is contained in Y is a member of the
o-algebra M (Y, ). The collection of all absolute measurable spaces will be denoted
by abMEAS.

Obviously, the notion of absolute measurable space is invariant under homeomor-
phisms. Hence it would be appropriate to define the notion of topological equivalence
for Borel measure spaces on separable metrizable spaces. In order to do this we need
the following definition of measures f;xt induced by measurable maps f.

DEFINITION 1.3 (fapt). Let X and Y be separable metrizable spaces, let M(X, 1) be
a o -finite Borel measure space, and let f : X — Y be a ji-measurable map. A subset
M of Y is said to be (fujr)-measurable if there exist Borel sets A and B in Y such that
ACM C Band u(f~'[B\ A]) = 0.

It is clear that M(fgu,Y) is a complete, finite Borel measure on Y whenever
w(X) < 0o, and that M(fau, Y) is complete and o -finite whenever f is a homeomor-
phism of X into ¥ and u is o-finite.3

DErINITION 1.4. o-finite Borel measure spaces M(X, ) and M(Y,v) are said to
be topologically equivalent if there is a homeomorphism h of X onto Y such that
huu(B) = v(B) whenever B € B(Y).

The last definition does not require that the Borel measure spaces be complete —
but 44 does induce complete measure spaces. Hence the identity homeomorphism
idy of a space X yields a complete Borel measure space M(idys i, X), indeed, the
measure completion of M(u, X).

It is now evident that there is no loss in assuming that the absolute measurable
space X is contained in the Hilbert cube [0, 1] N for topological discussions of the
notion of absolute measurable space.

1.1.1. Finite Borel measures. Often it will be convenient in discussions of absolute
measurable spaces to deal only with finite Borel measure spaces rather than the more
general o-finite ones — that is, the collection MEAST rather than MEAS. The
following characterization will permit us to do this.

THEOREM 1.5. A separable metrizable space X is an absolute measurable space if and
only if, for every Borel measure space M(Y, i) in MEAST™ it is true that every
topological copy M of X that is contained in Y is a member of (Y, ).

Proor. Clearly, if a space X is an absolute measurable space, then it satisfies the
condition given in the theorem. So suppose that X satisfies the condition of the
theorem. Let M(Y, u) be a o-finite Borel measure space. There is a finite Borel
measure space M(Y, v) such that the o-algebra equality Dt(Y, ) = M(Y, v) holds
(see SectionA.5 of Appendix A). SoM € IM(Y, u), hence X is an absolute measurable
space. O

3 See Appendix A for more on the operator f.
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1.1.2. Continuous Borel measure spaces. Later it will be necessary to consider the
smaller collection of all continuous Borel measure spaces.* If this smaller collection
is used in Definition 1.2 above, it may happen that more spaces become absolute mea-
surable spaces. Fortunately, this will not be the case because of our assumption that
all measure spaces in MEAS are o -finite. Under this assumption, for a measure u,
the set of points x for which u({x}) is positive is a countable set. As continuous
Borel measures have measure zero for every countable set, the collection of absolute
measure spaces will be the same when one considers the smaller collection of all
continuous, complete, o-finite Borel measure spaces. The following notation will
be used.

NotaTioN 1.6 (MEAS®™). The collection of all continuous, complete, o-finite

Borel measure spaces M(X, i) on all separable metrizable spaces X is denoted
by MEAS®™, That is,

MEAS®™ = {M(X, 1) € MEAS: M(X, i) is continuous }. (1.1)

1.1.3. Elementary properties. Let us describe some properties of absolute measur-
able spaces. Clearly, each absolute Borel space is an absolute measurable space. The
M. Lavrentieff theorem (Theorem A.2) leads to a characterization of absolute Borel
spaces. This characterization yields the following useful characterization of absolute
measurable spaces.

THEOREM 1.7. Let X be a separable metrizable space. The following statements are
equivalent.

(1) X is an absolute measurable space.

(2) There exists a completely metrizable space Y and there exists a topological copy
M of X contained in Y such that M € IM(Y,v) for every complete, finite Borel
measure space M(Y, v).

(3) Foreach complete, finite Borel measure space M(X , 1) there is an absolute Borel
space A contained in X with u(X \ A) = 0.

Proor. It is clear that the first statement implies the second.

Assume that the second statement is true and let 2: X — M be a homeomorphism.
Then M(Y, hy ) is a complete Borel measure space in MEASfinit There exists a Borel
set A’ suchthat4” C M and hyu(M \ A’) = 0. As Y is a completely metrizable space,
the space 4’ is an absolute Borel space. The restricted measure space M(M, (hy)|M)
is complete and is topologically equivalent to M(X, u). So u(X \ 4) = 0, where
A = h™'[A’]. As A’ is an absolute Borel space, we have A is an absolute Borel space;
hence statement (3) follows.

Finally let us show statement (3) implies statement (1). Let ¥ be aspace and let M be
a topological copy of X contained in Y. Suppose that M(Y, 1) is complete and finite.
Then M(M, i |M) is also complete and finite. It is easily seen that statement (3) is
invariant under topological equivalence of Borel measure spaces. Hence M(M, i|M)

4 See Appendix A, page 187, for the definition of continuous Borel measure space.
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also satisfies statement (3). There is an absolute Borel space A4 such that 4 C M and
(uIM)(M \4) =0.As u*(M\A4) = (/LlM)(M \4) = 0, wehave M \4 € M(Y, n),
whence M = (M \ A) UA is in IMN(Y, w). O

1.1.4. o-ring properties. As an application of the above theorem, let us investigate
a o -ring property of the collection abMEAS of all absolute measurable spaces. We
begin with closure under countable unions and countable intersections.

ProposiTioN 1.8. If X = |52, X; is a separable metrizable space such that each X; is
an absolute measurable space, then X and (2, X; are absolute measurable spaces.

Proor. Let Y be a completely metrizable extension of X and v be a complete, finite
Borel measure on Y. Then X; € 2M(Y,v) for every i. Hence X € 2M(Y,v) and
ﬂ?il Xi € M(Y,v). Theorem 1.7 completes the proof. O

ProPOSITION 1.9. If X = X; U X, is a separable metrizable space such that X,
and X, are absolute measurable spaces, then X| \ X is an absolute measurable
space.

PrROOF. Let Y be a completely metrizable extension of X and v be a complete, finite
Borel measure on Y. Then X; € 9(Y,v) fori = 1,2. Hence X \ X3 is in 91(Y, v).
Theorem 1.7 completes the proof. O

The o-ring property of the collection abMEAS has been established. The next
proposition follows from the ring properties.

PROPOSITION 1.10. If X is a Borel subspace of an absolute measurable space, then X
is an absolute measurable space.

ProoF. Let Y be an absolute measurable space that contains X as a Borel subspace.
Let Y be a completely metrizable extension of Y. There exists a Borel subset B of ¥j
such that X = Y N B. As ) is a completely metrizable space, we have that B is an
absolute Borel space, whence an absolute measurable space. The intersection of the
spaces Y and B is an absolute measurable space. O

L.1.5. Product properties. A finite product theorem for absolute measurable spaces
is easily shown.

THEOREM 1.11. A nonempty, separable, metrizable product space X1 x X is also an

absolute measurable space if and only if X\ and X» are nonempty absolute measurable
spaces.

The proof is a consequence of the following proposition whose proof is left to the
reader as it follows easily from Lemma A.34 in Appendix A.

ProPOSITION 1.12. Let M(Y| x Y2, ) be a complete, o -finite Borel measure space.
If X1 is an absolute measurable subspace of Y1, then X, x Y, is j.-measurable.



