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Preface

This is an introductory textbook on automatic flight control systems (AFCSs) for
undergraduate aeronautical engineers. It is hoped that the material and the
manner of its presentation will increase the student’s understanding of the basic
problems of controlling an aircraft’s flight, and enhance his ability to assess the
solutions to the problems which are generally proposed. Not every method or
theory of control which can be used for designing a flight controller is dealt with
in this book; however, if a reader should find that some favourite technique or
approach has been omitted, the fault lies entirely with the author upon whose
judgement the selection depended. The method is not being impugned by its
omission.

Before understanding how an aircraft may be controlled automatically in
flight it is essential to know how any aircraft will respond dynamically to a
deliberate movement of its control surfaces, or to an encounter with unexpected
and random disturbances of the air through which it is flying. A sound knowledge
of an aircraft’s dynamic response is necessary for the succesful design of any
AFCS, but that knowledge is not sufficient. A knowledge of the quality of aircraft
response, which can result in the aircraft’s being considered by a pilot as
satisfactory to fly, is also important. In this book the first six chapters are wholly
concerned with material relevant to such important matters.

There are now so many methods of designing control systems that it would
require another book to deal with them alone. Instead, Chapters 7 and 8 have
been included to provide a reasonably self-contained account of the most
significant methods of designing linear control systems which find universal use in
AFCSs. Emphasis has been placed upon what are spoken of as modern methods
of control (to distinguish them from the classical methods): it is most unlikely that
today’s students would not consider the use of a computer in arriving at the
required solution. Being firmly based upon time-domain methods, modern control
theory, particularly the use of state equations, is a natural and effective technique
for use with computer aided engineering and harmonizes with the mathematical
description of the aircraft dynamics which are most completely, and conveniently,
expressed in terms of a state and an output equation. The form involved leads
naturally to the use of eigenvalues and eigenvectors which make consideration of
the stability properties of the aircraft simple and straightforward. Since computers
are to be used, the need for normalizing the dynamic equations can be dispensed
with and the differential equations can be solved to find the aircraft’s motion in
real time. The slight cost to be borne for this convenience is that the stability
derivatives of the aircraft which are used in the analysis are dimensional;
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however, since the aircraft dynamics are in real time, the dynamics of the flight
controller, the control surface actuators, and the motion sensors can also be dealt
with in real time, thereby avoiding the need for cumbersome and unnecessary
transformations. Since dimensional stability derivatives were to be used, the
American system of notation for the aircraft equations of motions was adopted:
most papers and most data throughout the world now use this system.

Chapters 9 to 11 relate to particular modes of an AFCS, being concerned
with stability augmentation systems, attitude and path control systems. A
particular AFCS may have some, or all, of these modes involved in its operation,
some being active at all times in the flight, and others being switched in by the
pilot only when required for a particular phase of flight. Although helicopter flight
control systems do not differ in principle from those used with fixed wing aircraft,
they are fitted for different purposes. Furthermore, both the dynamics and the
means of controlling a helicopter’s flight are radically different from fixed wing
aircraft. Consequently, helicopter AFCSs are dealt with wholly in Chapter 13 to
emphasize the distinctive stability and handling problems that their use is
intended to overcome.

Active control systems are dealt with in Chapter 12 and only a brief
treatment is given to indicate how structural motion can be controlled
simultaneously, for example, with controlling the aircraft’s rigid body motion.
Ride control and fuselage pointing are flight control modes dealt with in this
chapter.

In the thousands of commercial airliners, the tens of thousands of military
aircraft, and the hundreds of thousands of general aviation aircraft which are
flying throughout the world today, examples of the types of AFCS discussed in
this book can easily be found. But most modern AFCSs are digital, and to
account for this trend Chapter 14 has been added to deal solely with digital
control methods. The consequences for the dynamic response of the closed-loop
system of implementing a continuous control law in a digital fashion is
emphasized. Results complementary to those in Chapters 9 to 11, obtained using
wholly digital system analysis, are also shown.

The final chapter deals briefly with the subject of adaptive flight control
systems, and three appendices provide a summary of information relating to
actuators, sensors, aircraft stability data, and human operators.

In writing a textbook, ideas and techniques which have been used effectively
and easily by the author over the years are discussed and presented, but the
original source is often forgotten. If others find their work used here but
unacknowledged, please be assured that it was unintentional and has occurred
mostly as a result of a middle-aged memory rather than malice, for I am conscious
of having had many masters in this subject. At the risk of offending many
mentors, I wish to acknowledge here only the special help of three people, for the
list of acknowledgements would be impossibly long otherwise. Two are American
scholars: Professors Jack d’Azzo and Dino Houpis, of the United States Air Force
Institute of Technology, in Dayton, Ohio. They are nonpareil as teachers of
control and taught me in a too-short association the importance of the student and
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his needs. The other is my secretary, Liz Tedder, who now knows, to her lasting
regret, more about automatic flight control systems than she ever wished to know.

D. McLEAN
Southampton
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2 Aircraft Flight Control

flight control system (AFCS). In aircraft, such AFCSs employ feedback control to
achieve the following benefits:

i The speed of response is better than from the aircraft without closed loop
control.

2. The accuracy in following commands is better.

3. The system is capable of suppressing, to some degree, unwanted effects

which have arisen as a result of disturbances affecting the aircraft’s flight.

However, under certain conditions such feedback control systems have a tendency
to oscillate; the AFCS then has poor stability. Although the use of high values of
gain in the feedback loops can assist in the achievement of fast and accurate
dynamic response, their use is invariably inimical to good stability. Hence,
designers of AFCSs are obliged to strike an acceptable, but delicate, balance
between the requirements for stability and for control.

The early aeronautical experimenters hoped to make flying easier by
providing ‘inherent’ stability in their flying machines. What they tried to provide
was a basic, self-restoring property of the airframe without the active use of any
feedback. A number of them, such as Cayley, Langley and Lilienthal, discovered
how to achieve longitudinal static stability with respect to the relative wind, e.g.
by setting the incidence of the tailplane at some appropriate value. Those
experimenters also discovered how to use wing dihedral to achieve lateral static
stability. However, as aviation has developed, it has become increasingly evident
that the motion of an aircraft designed to be inherently very stable, is particularly
susceptible to being affected by atmospheric turbulence. This characteristic is less
acceptable to pilots than poor static stability.

It was the great achievement of the Wright brothers that they ignored the
attainment of inherent stability in their aircraft, but concentrated instead on
making it controllable in moderate weather conditions with average flying skill. So
far in this introduction, the terms dynamic and static stability have been used
without definition, their imprecise sense being left to the reader to determine
from the text. There is, however, only one dynamic property — stability — which
can be established by any of the theories of stability appropriate to the differential
equations being considered. However, in aeronautical engineering, the two terms
are still commonly used; they are given separate specifications for the flying
qualities to be attained by any particular aircraft. When the term static stability is
used, what is meant is that if a disturbance to an aircraft causes the resulting
forces and moments acting on the aircraft to tend initially to return the aircraft to
the kind of flight path for which its controls are set, the aircraft can be said to be
statically stable. Some modern aircraft are not capable of stable equilibrium —
they are statically unstable. Essentially, the function of static stability is to recover
the original speed of equilibrium flight. This does not mean that the initial flight
path is resumed, nor is the new direction of motion necessarily the same as the
old. If, as a result of a disturbance, the resulting forces and moments do not tend
initially to restore the aircraft to its former equilibrium flight path, but leave it in
its disturbed state, the aircraft is neutrally stable. If it tends initially to deviate
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further from its equilibrium flight path, it is statically unstable. When an aircraft is
put in a state of equilibrium by the action of the pilot adjusting the controls, it is
said to be trimmed. If, as a result of a disturbance, the aircraft tends to return
eventually to its equilibrium flight path, and remains at that position, for some
time, the aircraft is said to be dynamically stable. Thus, dynamic stability governs
how an aircraft recovers its equilibrium after a disturbance. It will be seen later
how some aircraft may be statically stable, but are dynamically unstable, although
aircraft which are statically unstable will be dynamically unstable.

1.2 CONTROL SURFACES

Every aeronautical student knows that if a body is to be changed from its present
state of motion then external forces, or moments, or both, must be applied to the
body, and the resulting acceleration vector can be determined by applying
Newton’s Second Law of Motion. Every aircraft has control surfaces or other
means which are used to generate the forces and moments required to produce
the accelerations which cause the aircraft to be steered along its three-dimensional
flight path to its specified destination.

A conventional aircraft is represented in Figure 1.1. It is shown with the
usual control surfaces, namely elevator, ailerons, and rudder. Such conventional
aircraft have a fourth control, the change in thrust, which can be obtained from
the engines. Many modern aircraft, particularly combat aircraft, have consider-
ably more control surfaces, which produce additional control forces or moments.
Some of these additional surfaces and motivators include horizontal and vertical
canards, spoilers, variable cambered wings, reaction jets, differentially operating
horizontal tails and movable fins. One characteristic of flight control is that the
required motion often needs a number of control surfaces to be used
simultaneously. It is shown later in this book that the use of a single control
surface always produces other motion as well as the intended motion. When more
than one control surface is deployed simultaneously, there often results

Rudder

\ Ailerons

Elevator

Figure 1.1 Conventional aircraft.
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Figure 1.2 A proposed control configured vehicle.

considerable coupling and interaction between motion variables. It is this physical
situation which makes AFCS design both fascinating and difficult. When these
extra surfaces are added to the aircraft configuration to achieve particular flight
control functions, the aircraft is described as a ‘control configured vehicle’ (CCV).
A sketch of a proposed CCV is illustrated in Figure 1.2 in which there are shown
a number of extra and unconventional control surfaces. When such extra controls
are provided it is not to be supposed that the pilot in the cockpit will have an
equal number of extra levers, wheels, pedals, or whatever, to provide the
appropriate commands. In a CCV such commands are obtained directly from an
AFCS and the pilot has no direct control over the deployment of each individual
surface. The AFCS involved in this activity are said to be active control technology
systems. The surfaces are moved by actuators which are signalled electrically (fly-
by-wire) or by means of fibre optic paths (fly-by-light). But, in a conventional
aircraft, the pilot has direct mechanical links to the surfaces, and how he
commands the deflections, or changes, he requires from the controls is by means
of what are called the primary flying controls.

1.3 PRIMARY FLYING CONTROLS

In the UK, it is considered that what constitutes a flight control system is an
arrangment of all those control elements which enable controlling forces and
moments to be applied to the aircraft. These elements are considered to belong to
three groups: pilot input elements, system output elements and intervening
linkages and elements.

The primary flying controls are part of the flight control system and are
defined as the input elements moved directly by a human pilot to cause an



