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PREFACE

This book covers topics which could not be included in the earlier
volumes without making them too bulky. Rankine’s theory on pres-
sure of frictional soils has been discussed in the chapter on “Masonry
Dams and Retaining Walls” in ‘“Mechanics of Structures” — Vol. II.
It was necessary to deal with the case of soils of the cohesive
and composite types. Accordingly, a chapter on- Earth Pressure has
been added in this book, the current notation used in Soil Mechanics
being adopted for the purpose. The Reciprocal Theorem is a valu-
able tool in structural analysis. Most text-books, however, give a
sketchy proof of this important theorem. A comprehensive and
satisfying treatment with the help of “influence coefficients” is given
by Sir R. V. Southwell and this has been closely followed in dealing
with the subject.

I cannot adequately thank Mr. H. V. Adavi, M.E., of the
College of Engineering, Poona, for undertaking the dreary task of
checking all numerical work, which he has cheerfully done with
great keenness and enthusiasm. I am equally indebted to Reve-
rend Brother Hernandez, S. J. and his staff of the Anand Press, for the
excellent work done by them in bringing out this volume.

Poona
March, 1962 S. B. JUNNARKAR

SECOND EDITION

In this edition, use has been made both of the British and Metric
units of measurements. As far as possible, errors and misprints have
been corrected.

Poona
October, 1965 S. B. J.
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CHAPTER 1

MOHR CIRCLE DIAGRAM

1. Principal stresses and principal planes: Given
the principal stresses and principal planes at a point in a system
of two dimensional stresses, in art. 7 of Chapter II in Vol. I,
we made use of the Mohr circle to obtain the normal and
tangential stress-intensities across a given plane through the
point. If the principal stresses are p; and p,, the normal and
tangential stresses across a plane inclined at 0 to the plane of

Py are:

fn = p1c0s20 + posin26 _h —2}_1)2 +(P1—;P2) cos 26

Pt = (p; — po) sinb cosh = (111;—2‘02) sin 260.

-~

Py

Fic. 1

Using the cartesian system of co-ordinates, along the axis
0X, set off 04 and OB to scale to represent p; and p, respectively.
Bisect BA at C and with C as centre and B4 as diameter, des-
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cribe & circle. Set off CP at /26 with OX to meet the circle
at P. Join. P which represents the resultant intensity of
stregs p_on, a Wlane inclined at Z 6 to the plane of the principal
Steess py.
rom P draw PQ perpendicular to OX.
In fig. 1(ii),

CA:CB=p12—p2 nd 0C = p1+p2

Then, 0Q = 0C + CQ = OC + GP cos 20

_pLFbs | (P1— b
=5 —f—( 5 )00526

and QP — CP sin 20 =”1;—”2 sin 26.

0Q and QP respectively represent p, and p; across a plane
whose inclination to the plane of p; is 6. OP, therefore, re-
presents the resultant intensity of stress p on the plane, its inclina-
tion to the normal being ¢ .

In all graphical work, it is essential that a suitable conven-
tion about signs be adopted and scrupulously followed. We
have adopted the usual cartesian convention. Thus, in fig. 1,
the principal stresses p; and p, are like and have been plotted
on the same side. It is customary to treat femsile stresses as
positive; compressive stresses will, therefore, be treated as negative
and will be plotted on the other side. A radius vector, rotating
anti-clockwise about the origin, will be treated as describing a
positive angle with reference to OX.

Just as we utilised the Mohr circle to obtain the normal
and tangential stress-intensities across a given plane, when the
principal stresses and the principal planes-are given, we may
utilise the construction for the inverse problem, viz., to deter-
mine the principal stresses and the principal planes at a point in
a strained material, when we are given the normal and tangential
stresses across two mutually perpendicular planes through the
point. Before doing so, however, we must adopt a convention
for representing a shear stress. A clockwise shear stress across
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a plane will be treated as positive; an anti-clocklvise shear stress
will, therefore, be treated as negative. We may ggnnrapise fhe

conventional signs as under:

Adopting the cartesian convention, the normal Stress=e€ross
a plane will be plotted as an abscissa along the horizontal axis.
The tangential stress across the plane will be plotted as an
ordinate along the vertical axis.

A tensile normal stress will be treated as positive. A
compressive normal stress will, therefore, be treated as negative.

A clockwise tangential stress will be treated as positive. An
anti-clockwise tangential stress will, therefore, be treated as
negative.

Consider the case of two mutually perpendicular planes
through a point in a strained material, across which the normal
stresses are p and p’ respectively accompanied by a shear stress
of intensity ¢. In art. 8 of Chapter II in Vol. I, we have dis-
cussed this case. The principal stresses are:

21 2%/;_' + V(‘—b%p—)z + ¢®

b=t YLV + g2

2 2
The position of the principal planes is given by,
tan 20 = -4 > where 0 is the inclination of the major

principal plane to the plane carrying the normal stress p.

We shall use the Mohr circle diagram to obtain these
results.

Fig. 2(i) shows a rectangular block 4,B,C;D; in which the
vertical faces 4,D; and B;C, carry a normal tensile stress of p
accompanied by a shear stress of intensity ¢. The horizontal
faces A, B, and D,C] have a normal tens}le stress of p” accompanied
by the complimentary shear stress  intensity of ¢. Im the
graphical construction, both the normal and tangential inten-
sities of stress across the plane B;C; or 4,D, are positive, p being
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tensile and ¢ clockwise. For the plane 4,B; or D,C;, however,
the normal stress p’, being tensile, is positive, but the tangential
stress ¢ is negative because it is anti-clockwise.

4 ¢ pl 4
. <1
o, e
@) Pz mnd
< Eq By R “
Aq q P
4p,v '
B Q 20 A X
(1) Ot c a ”

P )
F1c. 2

Rl

We may now proceed with the construction as follows:

Select the origin O and set off the base-line OX. Along the
axis OX, set off 0Q =p. At Q, erect the ordinate QP =g,
above the base-line. Likewise, set off 0Q' =p’ along O0X
and erect the ordinate Q'P’ = ¢, below the base-line. Join
PP’ cutting the axis OX at C. C is the centre of the Mohr circle.
With centre C and radius = CP or CP’, describe a circle cut-
ting the axis OX at 4 and B. Then OA4 represents the major
principal stress p, and OB represents the other principal stress p,.

Proof :
By construction, Q Q = 00— 0Q' =p—p’

CQ_” P and 00:1’_42‘_1’_'.

Also, QP = Q’P’ =q
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the radius CP = /(CQ2 QP2 = 1/(12%?,—)2—“12
p+p/ h— s \2
04 = 0C + €A === +V(l) 21)) TP =y

b+ VTPV .
and OBzoc—GBz—Q——~V(£2_1’_) gt =py

As regards the positions of the principal planes, let Z QCP
in fig. 2(ii) be 26. Then, A
@ & U,
cQ (=112 p—1
Solve for 0, which is the angle which the plane B,C; makes

with the plane of the principal stress p;, anti-clockwise, if 6 is
positive.

tan 20 =

Therefore, to set off the principal plane of p; with reference
to the plane B,C;, draw CE; at £/ 6 with B,C,, measured in
the clockwise direction. CE; will, then, be the major principal
plane, the other principal plane being, of course, at right angles
to C,E;.

The construction is, therefore, proved.

Since the normal and tangential stress intensities across
a plane are represented by the abscissa and ordinate, respectively,
in this construction, it is evident that the maximum and mini-
mum direct stresses are represented by 04 and OB, i.e., by
the principal stresses p; and p,. There is no accompanying
shear.

For the maximum shear stress, the ordinate in the Mohr
circle diagram must be a maximum. Through the centre
C, draw a perpendicular to OX cutting the circle at R and R’.
The maximum shear stress across a plane is, therefore, repre-

sented by the ordinate CR or CR’ and is | V(Q_Q_pl):_qz
The accompanying normal stress across the planes of maximum

p+1
2

shear is represented by OC and is For the position
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of the planes of maximum shear, / ACR is twice the angle which
the plane makes with the plane of the principal stress p;.

But ZACR = 90°.

Therefore, the plane of maximum shear is inclined at
half this angle or 45° to the principal plane. Since Z ACR' =
270°, the other plane of maximum shear is inclined at 135°
to the major principal plane.

Example 1.

At a certain point in a strained material, the intensities of normal
stress across two planes at right angles to each other are 1000 and 400
kglem?, tensile, and there is a shear stress of 400 kglem?® across the
planes.  Locate the principal planes and evaluate the principal stresses.
Also obtain the maximum intensity of shear stress and specify its planes.

Construct the Mohr circle as shown in fig. 3. Selecting the
origin 0, 3et off 0Q = 1000 kg/cm?, to scale, along OX. At
Q,, erect the ordinate QP =400 kg/cm?, to the same scale,
above the base line, because the shear stress on the vertical
planes 4;D; and B,C; is clockwise. Set off 0Q’ = 400 kg/cm?
along OX and erect the ordinate Q'P’ = 400 kg/cm2, below the
base line, because the shear stress on the horizontal planes
A.B; and D,C; is anti-clockwise. Join PP’ cutting OX at C.
With centre C and radius CP or CP’, describe a circle cutting
OX at A and B. Scale off 04 = 1200 kg/cm?, tension, which
is the major principal stress p;. Scale off 0B =200 kg/cm?,
tension, which is the other principal stress p,.

Scale off / PCQ = 53° 8’
20 =538°. 8
ie. 0 = 26°34".

Or, scale off / PBQ which gives 0 directly. The plane
B,C, is inclined at 26°34’ to the plane C E; of the principal
stress p;, anti-clockwise. Through C,, set off C{E; at 26°34’
with C,B;, clockwise. This will be the principal plane of the
major principal stress of p; = 1200 kg/cm?. The second principal
plane will be at right angles to it.
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For the maximum shear stress, set off the diameter RCR’
perpendicular to OX. The maximum shear stress is repre-
sented by CR or CR’ and is 500 kg/cm?.

(i) ' (iit)
C1
; \
p"=400kg/cm?
4 r A 4 4 4 i
q < Ci,
1D * \
7l . > P=1000kg/cm? A,
e E1/ By 26°34'B“\\—~1s 2
AN T 9=400kg/em? 1
p' R
P )
Bl <0 |, 20 A N
O Q /c o ks

RI

(i)
Fic. 3

For the position of the planes of maximum shear with
reference to the plane B,Cj, scale off /Z RCP which is 36°52".
Therefore, one of the planes of maximum shear is inclined at
18°26’, anti-clockwise, with B;C;. The principal planes and
planes of maximum shear are shown in fig. 3(iii) with reference
to the vertical plane. The shear planes are shown dotted.
These are, of course, inclined at 45° to the principal planes.



