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Preface

Contemporary mankind faces an increasingly serious danger of pollution of the air
and water of our planet by toxic wastes.

The serious task of the protection of civilization against ecological catastrophe
confronts the scientists and specialists of the world. In this respect, undoubted interest
resides in zeolites which can be utilized in various environmental protection systems
against pollution with great success because of unique adsorptive, molecular sieve,
ion-exchange and catalytic properties. Such interests in zeolites greatly increased in
the 1960s and 1970s, when large industrial sized deposits of zeolites were discovered.

The discovery of stratified sedimentary zeolites, together with their comparative
simplicity of mining, relatively low cost and more or less worldwide distribution gave
easy access to these minerals for large-scale utilization. In particular this included
uses for drying and purification of gases and effluents of different origin in order to
trap toxic compounds and recover valuable components, for the disposal of radioactive
wastes, for more rational and safe utilization of mineral fertilizers and toxic chemicals
in agriculture, and so on.

This book, a joint effort of researchers from states of the former USSR and from
Bulgaria, does not pretend to completely clarify all of the problems concerning the
properties and utilization of natural sedimentary zeolites. Rather it considers the most
important questions concerning mineralogical classification of zeolite structures, the
genesis of natural sedimentary zeolites, and their occurrence. The natural sedimentary
zeolites are considered as microporous adsorbents, ion-exchangers and catalysts;
various uses in industry, agriculture, and in environment protection are also dealt with.

Obviously, our book is not free from deficiencies. and the authors would be happy
to receive any comment. If this book is in some way useful for readers interested in
the properties and utilization of natural sedimentary zeolites, the efforts of the authors
will have been worthwhile.




Table of contents

Preface

1. The mineralogy of zeolites

1L
1.2.
© 13

Crystal chemistry of the zeolites
Physical properties of zeolites
Characteristics of the most important zeolite

2. Natural occurrence of zeolites

21.
2.2,
23.
24.
2.5.

Genetic types of zeolite occurrence

Distributions and specifics of economic occurrences of zeolites
Methods of investigation of zeolite rocks

Mining and processing of natural zeolites

Safety aspects

3. Natural zeolites — microporous systems

3.1
3.2
33.
34
3.5
3.6.
3.7.

Adsorptive properties

Adsorption heats

Spectroscopic investigations

Diffusion in"natural zeolites

Chromatographic properties of natural zeolites
Ion exchange properties

Catalytic reactions on natural zeolites

1054995

34
S 34

74
85
93
96

101
105
120
123
131
133
147
181



4. Uses of natural zeolites in industry

4.1.
4.2.
43.
44.
45.
4.6.
4.7.
438.

Index

Drying of gases and liquids

Gas purification systems

Oxygen enrichment of air

Deactivation of radioactive effluents

Filtration of drinking water and purification of effluents
Extraction of metals from complex solutions and industrial wastes
Natural zeolites in the paper and rubber industries

Some further uses of natural zeolites

5. Natural zeolites in agriculture
51,
5.2,
5.3.
5.4.

Animal husbandry and aviculture

Plant growth

Fish breeding

Protection of environment and other uses

205
205
217
230
235
240
257
262
266

278
278
283
286
287

291

Names for the successor states and institutions of the former USSR are those that were
in use at the time the book was being written.



The mineralogy of the zeolites

At present the zeolite group includes more than 40 naturally occurring species, and
is the largest group of minerals among the silicates. Before the 1960s, zeolite minerals
were thought to be-mainly distributed in hydrothermal veins and geodes'in basalts
(Fig. 1.1), andesites and other volcanic rocks. Zeolites in such settings form large,
well-shaped crystals and druses. Due to the usual small size of the veins and because
of polyminerality, these deposits have no practical importance, but samples of vein
‘origin have been used to establish the properties of the minerals and the possibility
of their utilization in industry. All known zeolites have been found in hydrothermal
veins; some of them are major rock forming species.

Only in recent decades, first in Japan, and later in the USA and Europe, has a
wide distribution of zeolites in certain sedimentary rocks been established. These
deposits differ markedly from the primary type. They are frequently monomineralic,
of huge dimensions and suitable for industrial mining. Zeolite crystals in sedimentary
rocks, however, are usually microscopic in size (Fig. 1.2).

1.1. CRYSTAL CHEMISTRY OF THE ZEOLITES

According to Smith [1] a zeolite is an aluminosilicate with a skeletal structure,
containing voids occupied by ions and molecules of water having a considerable
freedom of movement that leads to ion-exchange and reversible dehydration.

The primary building block of the zeolite framework is the tetrahedron, the centre
of which is occupied by a silicon or aluminum atom, with four atoms of oxygen at
the vertices. Each oxygen atom is shared between two tetrahedra. Hence, the tetrahedra
form a continuous framework. Substitution of Si** by AI’* defines the negative charge
of the framework, which is compensated by monovalent or divalent cations located




2 The mineralogy of the zeolites . [Ch. 1

Fig. 1.1. Chabazite crystals of hydrothermal vein origin.

together with water molecules in structural channels. Cations in the channels are
substituted easily, and therefore they are termed exchange or extra-framework cations,
unlike Si and Al which are not exchanged under ordinary conditions; the latter are
termed tetrahedral (T) or framework cations.

The idealized chemical formula of the zeolites is of the type M,,[Al.Si, Ozm,)]
pH,O where M is (Na, K, Li) and/or (Ca, Mg, Ba, Sr), n is cation charge; y/x =1 to
6, p/x = 1 to 4. It is also convenient to express the zeolite composition by so-called
oxide formulas of the type M,,O-Al,O;-xSi0O,- yH,0. The oxide foriula of the
widely distributed natural zeoliteclinoptilolite is thus (K,Na,1/2Ca),0-AlO;-
10SiO, - 8H,0. Unit cell contents can be expressed as (K7,Na,,Ca);(AlO2)s(SiO2)s0-
24H,0, or (K,,Na,Ca);[(AlSiz)O7] - 24H,0. The composition of the tetrahedral
framework is usually given in square brackets.

The Si/Al ratio in natural zeolites lies within the limits of 1 to 6. The lower limit
is determined by Lowenstein’s rule, according to which an AlO, tetrahedron cannot
associate with another AlO, tetrahedron by a common oxygen atom; at Si/Al = 1,
the silicon and aluminum tetrahedra alternate to form the ordered framework. Ordered
location of Si and Al is also possible at other Si/Al ratios. The upper limit of the
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Fig. 1.2. Clinoptilolite crystals in zeolitic tuff from Eastern Rhodopes, Bulgaria (SEM, x 600).

Si/Al ratio in the natural zeolites reaches 5 to 6 (clinoptilolite, mordenite, ferrierite,
dachiardite). In synthetic zeolites the silicon can be substituted by germanium, and
the aluminum by gallium, iron, chromium, boron, etc, but in natural specimens only
Be and Fe is observed in tetrahedral sites, in addition to Si and Al ;

The Si/Al ratio can vary considerably within the limits of one structural type,
depending upon the composition of original solutions and conditions of crystallization.
Zeolites are also characterized by complex substitutions of the type (Na,Al) 2 Si and
(Ca,Al) 2 Na,Si, and by the simple substitutions Ca 2 2Na, Na 2K, and so forth.

- The water content varies within certain limits depending upon the character of the

exchange cations and conditions of crystallization. Under ordinary conditions the
water molecules completely fill the free volume of channels and voids in the zeolite
structure. The free inner volume of the zeolite can be calculated by measuring the
volume of the water released under heating in vacuo. Experience shows that the
volumes calculated by this method agree well with structural data.

Chemical formulae, limits of variability of chemical composition and some
crystallographic and structural data for known zeolite mineral species are given in
Table 1.1. Reliable chemical analyses are presented in Gottardi and Galli’s monograph

(2]
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Sec. 1.1] Crystal chemistry of the zeolites 7

In the zeolite structure three relatively independent components are found: the
aluminosilicate framewor_lg,.ea(chﬁngable cations, and zeolitic water. This independence
is expressed in the existence of the same structure with varying components. For
example, cations can exchange and water molecules can be removed completely or
be substituted by other molecules. The independence is relative, since any change of
one component causes change of the other two. While the cations are mobile, the
framework is more or less deformed and stressed upon dyhydration; the distribution
of water molecules depends upon the character, the quantity and distribution of
cations and this in turn is defined by the density and distribution of anionic sites in
the structure.

F 4

1.1.1. The aluminosilicate framework '

The aluminosilicate framework is the most conserved and stable component and
defines the structure type. The topology of the framework, the numbers and
distribution of charges (aluminum sites) and stacking faults are basically formed at
the crystal growth stage and define a series of technologically important properties
of zeolites. Framework topology forms the basis of contemporary classification of
the zeolites.

For a mathematical description of the topology, the atomic pattern is reduced to
its simplest characteristics. The tetrahedron is considered as a structural point, i.e.
only the centre of the tetrahedron is taken into account. The centres of neighbouring
tetrahedrons are connected with straight lines (T-T) and the whole framework is
represented as a three-dimensional lattice; each centre is connected with four others
and the oxygen atoms are located near.but not on the connecting line (T-T). After
such simplification, separate polygonal and polyhedral sub-units are easily located
in the structure. .

On the basis of structural sub-units such as combinations of parallel four-
or six-membered rings and Archimedean polyhedra, one classification of zeolites was
suggested [3]. Later, Meyer [4] introduced the notion of “secondary building units”
(SBU). An SBU is the simplest configuration of tetrahedra out of which a given
tetrahedral framework can be built. Figure 1.3 shows these structural units: four-, six-
or eight-membered ordinary rings (4, 6, 8), double rings (44, 6-6, 8-8) and complexes
(4-1, 5-1, 44-1).

From any SBU one can construct numerous frameworks, including those of all
the hatural and synthetic zeolites found to date. Figure 1.4 shows two linked SBUs
(4-4-1), which are found in minerals with the heulaudite and stilbite structures.

The structural type of any given zeolite is defined by the topology of the framework.
At present the nomenclature used (and respective three-letter codes for structural
types) are those designated by a Commission of [IUPAC (Table 1.2). In each structural
type there are several structures with similar topology differing by various orderings
of tetrahedron cations, small deviations from ideal symmetry, and the composition
and distribution of the exchangeable cations. Fine stereoscopic pictures of all structural
types are given in the “Atlas of Zeolite Structure Types” [5].
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10 The mineralogy of the zeolites [Ch. 1

> 4-4-1 4-1

Fig. 1.3. The secondary building units (SBU) of the zeolite structures.

Apart from SBUs, various numbers and shapes of rings according to the components
of the tetrahedra, as well as different channels and voids in the zeolite frameworks
(Table 1.2), can be identified. Generally, voids are polyhedral in shape (Fig. 1.5).
Certain zeolite structures can be elaborated by alteration of such polyhedra. In this
sense, the cancrinite, sodalite and gmelinite cells can also be considered as SBUs.

Inside the polyhedra rather large voids are found. In faujasite a 26-hedron spherical
free volume 1.18 nm in diameter is found, whereas that in sodalite has a diameter of
0.66 nm. In chabazite the inner void is 1.1 nm albng the ¢ axis and 0.65nm
perpendicular to it. It can also be seen from Figure 1.5 that the polyhedra have .
“windows” made by 6-8- and 12-membered rings, through which small molecules

Fig. 1.4, Arrangement of the 4-4-1 units in the framework structures of (a) heulandite and (b) stilbite.




