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Preface

In 1951 and in 1952 Van Hove observed that there are theories where no
normalizable state vectors belong to the common domain of both the free
Hamiltonian Hy and the perturbed (full) Hamiltonian H. Faith in the
general applicability and validity of perturbation theory was then deeply
shaken and a whole conception of the physical world was put in doubt.
Perturbation theory rests indeed on the assumption that perturbed and
unperturbed state vectors belong to the same Hilbert space. Friedrichs’
book, where the existence of a host of unitarily inequivalent irreducible
representations of the canonical commutation relations was discussed at
length, came out in 1953 and not much later the Haag theorem was formu-
lated. Actually, it was in those years that the discussion on basic principles,
such as Lorentz invariance, spectral conditions, locality, etc., on which a re-
liable quantum field theory should be founded, led to the programme of the
Axiomatic Formulation of Quantum Field Theory (QFT), starting indeed
from the works by Haag, Garding, Wightman, Schweber and others. The
papers by Lehmann, Symanzik and Zimmermann (LSZ), published in “il
Nuovo Cimento” between 1954 and 1958, laid solid bases for future develop-
ments of QFT. The LSZ formalism is founded on the so-called asymptotic
condition which requires that a field theory must have an interpretation
in terms of asymptotic particles with definite quantum numbers. Such a
condition has been the guiding criterion underlying most of the work done
in QFT in subsequent years, from renormalization theory to the search for
a unified theory of the basic interactions among the constituents of mat-
ter. The crucial problem, which has been attracting the attention of many
physicists, is indeed how to map Heisenberg fields, in terms of which the
dynamics is given, to the asymptotic fields, in terms of which observables
are constructed. In an early unpublished note, consistent with the LSZ
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viii Quantum Field Theory and its Macroscopic Manifestations

formalism and written in Naples by Dell’Antonio and Umezawa in 1964, it
is stressed that this map can only be a weak map, i.e., a map among matrix
elements computed in the Hilbert space for the asymptotic fields. In subse-
quent years the study of such a mapping, called the dynamical map or the
Haag expansion, has been central in the research activity of Umezawa and
has revealed many subtle mechanisms through which the basic dynamics
manifests itself at the level of the observables. One of these mechanisms,
through which the consistency between the dynamical and the phenomeno-
logical level of the theory is expressed, is the dynamical rearrangement of
symmetry in spontaneously broken symmetry theories.

A very important development occurred when the dynamical generation
of long-range correlations, mediated by the Nambu—-Goldstone (NG) boson
quanta, was discovered in the early '60s, with subsequent implications in
local gauge theories, such as the Higgs mechanism, which is one of the
pillars of the standard model of elementary particles. It is interesting to
remark that exactly the discovery of these collective modes gave strength
to non-perturbative approaches, which could then establish themselves as
complementary, or even, in some cases, alternative to the perturbation
theory paradigm based on the ontological postulate of the asymptotic con-
dition. The discovery of the existence in QFT of the unitarily inequivalent
representations of the canonical commutation relations, which was in some
sense shocking in the previous decade, could be better appreciated. The
many inequivalent representations appeared to be a richness of QFT, which
was thus recognized to be, due to such a specific feature indeed, the proper
frame where systems endowed with many physically different phases could
be described. QFT turns out not to be simply the “extension” of Quantum
Mechanics (QM) to systems with an infinite number of degrees of freedom.
Instead, QFT appears to be drastically different from QM. The von Neu-
mann theorem, known for a long time and stating the unitary equivalence
of the irreducible representations of the canonical commutation relations in
QM, makes QM intrinsically not adequate to describe the variety of phys-
ically (unitarily) inequivalent phases of a given system. The crucial point
is that such a theorem fails to hold in QFT, indeed, due to the infinite
number of degrees of freedom. Spontaneous breakdown of symmetry, ther-
mal field theory, phase transitions in a variety of problems, the process of
defect formation during the process of non-equilibrium symmetry breaking
phase transitions characterized by an order parameter, could then be stud-

ied by exploiting the whole manifold of the inequivalent representations
in QFT.
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In these studies, the prominent role played by coherent states was recog-
nized, and attention was more and more focused on this, especially after the
discovery of laser beams in quantum optics. It appeared that the “physical
differences” among inequivalent representations are the differences in the
degree of coherence of the boson condensates in the respective vacua.

The developments of QFT very briefly depicted above constitute the
basis on which this book rests. The existence of the unitarily inequivalent
representations is, indeed, a recurrent theme in our presentation. It is ex-
plored in several Chapters and shown to be especially related with finite
temperature and dissipation in QFT, to the point that QFT can be rec-
ognized to be an intrinsically thermal quantum theory. The possibility of
defining operators such as entropy and free energy in QFT and the role
played there by them has been explored. The emerging picture is that no
microscopic physical system may be considered completely isolated (closed)
since it is always in interaction with the background fluctuations. From a
different perspective, dissipation is discussed in relation to the proposal
put forward by ’t Hooft, according to which classical deterministic systems
with information loss at high energy (Planck scale) may exhibit quantum
behavior at low energy.

Quantum dynamics underlies macroscopic systems exhibiting some kind
of ordering, such as superconductors, ferromagnets or crystals. Even the
large-scale structures in the Universe, as well as the ordering in the biolog-
ical systems, appear to be the manifestation of the microscopic dynamics
ruling the elementary components of these systems. Therefore, in our dis-
cussion of the spontaneous breakdown of symmetry and collective modes,
we stress that one crucial achievement has been recognizing that quantum
field dynamics is not confined to the microscopic world: crystals, ferro-
magnets, superconductors, etc. are macroscopic quantum systems. They
are quantum systems not in the trivial sense that they are made by quan-
tum components (like any physical system), but in the sense that their
macroscopic properties, accounted for by the order parameter field, cannot
be explained without recourse to the underlying quantum dynamics. The
problem is then to understand how the observed macroscopic properties are
generated out of the quantum dynamics; how the macroscopic scale char-
acterizing those systems is dynamically generated out of the microscopic
scale of the quantum elementary components. Such a change of scale is
understood to occur through the condensation of the NG boson quanta
in the system ground state. Even in the presence of a gauge field, the
NG boson fields do not disappear from the theory; they do not appear in
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the spectrum of physical particles, as the Higgs mechanism predicts; how-
ever, they do condense in the system vacuum state, thus creating a number
of physically detectable properties originating from the vacuum structure
so generated. Many of the physical examples we study in this book are
characterized by the phenomenon of NG boson condensation. In this con-
nection, we also consider the question of the dynamical generation of the
macroscopic stability out of fluctuating quantum fields.

Moreover, a variety of phenomena are also observed where quantum par-
ticles coexist and interact with extended macroscopic objects which show a
classical behavior, e.g., vortices in superconductors and superfluids, mag-
netic domains in ferromagnets, dislocations in crystals and other topological
defects, fractal structures and so on. One is thus also faced with the ques-
tion of the quantum origin of topological defects and of their interaction
with quanta. This is a crucial issue for the understanding of symmetry
breaking phase transitions and structure formation in a wide range of sys-
tems, from condensed matter to cosmology. We are thus led to discuss how
the generation of ordered structures and of extended objects is explained in
QFT. We show that topological defects are originated by non-homogeneous
(localized) coherent condensation of quanta. The approach we follow is thus
in some sense alternative to the one in which one starts from the classical
soliton solutions and then quantizes them. Along the same line of thought,
also oscillations of mixed particles, with particular reference to neutrinos,
which manifest themselves on large (macroscopic) space distances appear
to be connected to a (microscopic) condensation mechanism in the vacuum
state.

As a general result stemming out of our discussion in this book we could
say that recognizing the existence of the collective NG boson modes in spon-
taneously broken symmetry theories has produced a shift of paradigm (d
la Kuhn): the former purely atomistic vision of the world, although neces-
sary, turns out to be not sufficient to explain many physical phenomena.
One needs to integrate such an atomistic vision with the inclusion of the
dynamical generation of collective modes.

Throughout the book we have not specifically considered many im-
portant computational and conceptual questions and problems that have
marked in a significant way the historical development of QF T, among these
primarily renormalization problems. Neither have we discussed string the-
ory, inflationary scenarios in cosmology and some recent theoretical and
experimental achievements, such as, for example, the ones in the Bose—
Einstein condensation of atoms in magnetic traps or other kinds of potential
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wells, and related developments in quantum optics and quantum comput-
ing. Our choice is motivated by the fact that the present book is not meant
to be one on the general formalism of QFT and the whole spectrum of its
applications. In any case, we apologize to the reader for neglecting many
important topics and for many holes in our presentation.

We use both the operator formalism and the functional integration for-
malism. In the operator formalism the particle and wave-packet physical
picture is more transparent, while in the functional formalism the general
mathematical structure underlying the symmetry properties and the cor-
relation functions appears more evident. From a formal point of view, the
price we pay for the apparent non-homogeneous treatment is compensated
by the multi-faceted understanding of the theoretical structure under study.
Another price we pay for the variety of arguments treated is a non-uniform
notation: our preference has been to adopt the general criterion of keeping
contact with the notation of the original works.

The level of the presentation has been finalized to a readership of gradu-
ate students with a basic knowledge of quantum mechanics and QFT. Some
of the presented material grew from graduate courses on elementary particle
physics and/or condensed matter physics which the authors taught at the
University of Salerno and Czech Technical University in Prague. The mat-
ter is organized as shown in the following table of contents and purposely
several arguments and notions have been repeated in different Sections and
Chapters for the reader’s convenience. Much formalism is confined to the
Appendices, where, however, the reader can find short discussions of con-
ceptually and computationally important topics, such as Glauber coherent
states and generalized coherent states. Some material on classical soliton
theory, homotopy theory and defect classification is confined to Chapter 10,
which may be skipped by the reader who is familiar with such topics.

Summarizing, the book contains an overview of many QFT results ob-
tained by many research groups and by ourselves. It is therefore imperative
to warmly thank all those colleagues and collaborators with whom we have
had the good fortune to work or to discuss some of the problems considered
in this book. This is certainly not a complete list, and we apologize for that.
It includes T. Arimitsu, V. Srinivasan, H. Matsumoto, S. Kamefuchi, Y.
Takahashi, H. Ezawa, E. Del Giudice, T. Evans, R. Rivers, J. Klauder, E.
C. Sudarshan, H. Kleinert, J. Tolar, J. Niederle, E. Celeghini, A. Widom,
Y. Srivastava, R. Manka, E. Alfinito, O. Romei, A. Iorio, A. Capolupo, G.
Lambiase, A. Kurcz, F. C. Khanna, P. A. Henning, E. Graziano, A. Beige,
R. Jackiw, R. Haag, P. L. Knight, G. Vilasi, G. Scarpetta, F. Mancini, D.
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Steer, O. Pashaev, P. Sodano, Y. X. Gui, K. Fujii, T. Yabuki, F. Buccella,
S. De Martino, S. De Siena, F. Illuminati, F. Dell’Anno, M. Di Mauro, A.
Stabile, I. Rabuffo, M. Tarlini, M. de Montigny, M. Piattelli-Palmarini, A.
Plotnitsky, M. Milani, S. Doglia, T.H. Elze, R.C. Ji, N. E. Mavromatos,
E. Pessa, G. Minati, K. Yasue, M. Jibu, G. G. Globus, G. L. Sewell, G.
't Hooft, G. E. Volovik, J. Swain, W. J. Freeman, K. H. Pribram, W. H.
Zurek, H. Haken, the late M. Marinaro, E. R. Caianiello, G. Preparata, A.
0. Barut, L. O’ Raifeartaigh, and of course H. Umezawa. A special thank
you goes to Francesco Guerra, Tom Kibble and Mario Rasetti for their
constant encouragement. We also thank Francesco Guerra for calling our
attention to the unpublished 1964 paper by Gianfausto Dell’Antonio and
Hiroomi Umezawa on the dynamical map. Without the patient efforts, the
advice and the assistance of Katie Lydon, Lizzie Bennett and Jacqueline
Downs of Imperial College Press and Ms E. H. Chionh of World Scientific
Publishing Company, we would never have been able to finish this book.
To them also all our warm thanks.

Salerno, Prague, July 2010

Massimo Blasone
Petr Jizba
Giuseppe Vitiello
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Chapter 1

The structure of the space of the
physical states

1.1 Introduction

Symmetry principles play a central role in the understanding of natural
phenomena. However, it is not always easy to recognize symmetries in
physical observations since at a phenomenological level they can manifest
as distorted, “rearranged” symmetries. For example, the fundamental sym-
metry between protons and neutrons, the nucleons, does not manifest as an
exact symmetry, but as a “broken symmetry”: the charge independence of
nuclear interaction is indeed violated by the electromagnetic interaction. In
general, various symmetry schemes, which are quite successful, also appear
to be in some way approximate symmetry schemes [79,343,443,476,617],
i.e., one has to disregard some phenomenological aspects, e.g., mass dif-
ferences, which violate certain symmetry requirements. A way of looking
at this situation is to interpret the observed deviations from the exact
symmetry as a phenomenological distortion or rearrangement of the basic
symmetry. Examples of rearranged symmetries are easily found in solid
state physics: crystals manifest a periodic structure, but do not possess the
continuous translational invariance of the Hamiltonian of molecular gas.
Ferromagnets present rotational invariance around the magnetization axis,
but not the original SU(2) invariance of the Lagrangian. In superconduc-
tivity and superfluidity the phase invariance is the one that disappears.
The crucial problem one has to face in the recognition of a symmetry is,
then, the intrinsic two-level description of Nature: one aspect of this duality
concerns original symmetries ascribed to “basic” entities, the other aspect
concerns the corresponding rearranged symmetries of observable phenom-
ena. This two-level description of Nature was soon recognized in Quantum
Field Theory (QFT) as the duality between fields and particles. Without
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going into the historical developments of this concept, which are outside
the purpose of this book, we only recall, as an example, how fundamental
this duality is in the renormalization theory, where the distinction is crucial
between “bare” and “observed” particles, namely the distinction between
basic fields and their physical “manifestation”.

In the following Sections we will focus our attention on some structural
aspects of QFT in order to prepare the tools to be used in the study of the
mechanisms through which the dynamics of the basic fields leads to their
observable physical manifestation. Thus, the core of our interest will be the
structure of the space of the physical fields, which will bring us to study
that peculiar nature of QFT consisting in the existence of infinitely many
unitarily inequivalent representations of the canonical (anti-)commutation
relations, and thus to the analysis of the von Neumann theorem, of the
Weyl-Heisenberg algebra, the characterization of the physical fields and
the coherent states. Our discussion will include in a unified view, topics
such as the squeezing and self-similarity transformations, fractals and quan-
tum deformation of the Weyl-Heisenberg algebra. A glance at the table of
contents shows how these subjects are distributed in the various Sections
and Appendices.

1.2 The space of the states of physical particles

Let us consider a typical scattering process between two or more particles.
By convenient measurements we can identify the kind, the number, the
energy, etc., of the particles before they interact (incoming particles); there
is then an interaction region which is precluded to observations and finally
we can again measure the kind, the number, the energy, etc., of the particles
after the interaction (outgoing particles). The sum of the energies of the
incoming particles is observed to be equal to the sum of the energies of the
outgoing particles. Incoming particles and outgoing particles are referred
to as “physical particles”, or else as “observed” or “free” particles, where
the word “free” does not exclude the possibility of interaction among them;
it means that the interaction among the particles can be considered to be
negligible far away, in space and time, from the interaction region. The total
energy of the system of free particles is given in a good approximation by
the sum of the energies of the single particles. We require that the energy of
the physical particles is determined as a certain function of their momenta.
In solid state physics the physical particles are usually called quasiparticles.



