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Preface

The symplectic revolution of the 1980s gave rise to the discovery of sur-
prising rigidity phenomena involving symplectic manifolds, their subsets,
and their diffeomorphisms. These phenomena have been detected with the
help of a variety of novel powerful methods, including Floer theory, a version
of Morse theory on the loop spaces of symplectic manifolds. A number of
recent advances show that there is yet another manifestation of symplectic
rigidity, taking place in function spaces associated to a symplectic manifold.
These spaces exhibit unexpected properties and interesting structures, giv-
ing rise to an alternative intuition and new tools in symplectic topology, and
providing a motivation to study the function theory on symplectic manifolds,
which forms the subject of the present book.

Recall that a symplectic structure on a 2n-dimensional manifold M is
given by a closed differential 2-form w which in appropriate local coordinates
is given by w = Z;“:l dp; A dg;. The Poisson bracket of a pair of smooth
compactly supported functions F, G on M is a canonical operation given by

OF 0G OF 0G
F.G} = oroly 820G
e ; (5% Op; Opj 5%’)

The Poisson bracket, which is one of our main characters, plays a fun-
damental role in symplectic geometry and its applications. For instance,
it governs Hamiltonian mechanics. The symplectic manifold M serves as
the phase space of a mechanical system. The evolution (or Hamiltonian
flow) hy: M — M of the system is determined by its time-dependent en-
ergy Hy € C°°(M). Hamilton’s famous equation describing the motion of
the system is given, in the Heisenberg picture, by F, = {F;, H;}, where
F; = F o h; stands for the time evolution of an observable function F' on
M under the Hamiltonian flow h;. The diffeomorphisms A; coming from all
possible energies H; form a group Ham(M,w), called the group of Hamil-
tonian diffeomorphisms. For closed simply connected manifolds this group
is just the identity component of the symplectomorphism group. The group
Ham can be considered as an infinite-dimensional Lie group. The function
space C°°(M) is, roughly speaking, the Lie algebra of this group, and the
Poisson bracket is its Lie bracket.

The structure of the function theory we are going to develop can be
illustrated with the help of the following picture. Fix your favorite ¢ > 0

ix
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’ Ham(M, w) ; ‘
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FiGURE 0.1. Two opposite regimes

and consider the natural mapping C°°(M) — Ham(M ) which takes a (time-
independent) function H to the time-t map h; of the corresponding Hamil-
tonian flow. In principle, this mapping enables one to translate information
about Hamiltonian diffeomorphisms (which nowadays is quite a developed
subject, see Chapter 4) into the language of function spaces. This naive
plan works successfully in two opposite regimes, infinitesimal (when ¢ — 0)
and asymptotic (when ¢t — 00) (see Figure 0.1).

Working in the infinitesimal regime, one arrives at a surprising phenom-
enon of C-robustness of the Poisson bracket. Observe that the expression
for the Poisson bracket involves the first derivatives of the functions F' and
G. Nevertheless, the functional ®(F,G) = ||[{F,G}||, where || stands for
the uniform norm of a function, exhibits robustness with respect to C°-
perturbations. In particular, as we shall show in Chapter 2, ® is lower semi-
continuous in the uniform norm. Even though this result sounds analytical
in nature, it turns out to be closely related to a remarkable bi-invariant
geometry on the group Ham(M,w) discovered by Hofer in 1990. We shall
discuss various facets of C’-robustness of the Poisson bracket. One of them
is the Poisson bracket invariant of a quadruple of subsets of a symplectic
manifold discussed in Chapter 7. Its definition is based on an elementary
looking variational problem involving the functional ®, while its study in-
volves a variety of methods of “hard” symplectic topology. Another facet is
symplectic approximation theory, discussed in Chapter 8. Its basic objective
is to find an optimal uniform approximation of a given pair of functions by
a pair of (almost) Poisson commuting functions.

The asymptotic regime gives rise to the theory of symplectic quasi-states
presented in Chapter 5. A symplectic quasi-state is a monotone functional
(: C*®°(M) — R with {(1) = 1 which is linear on every Poisson-commutative
subalgebra, but not necessarily on the whole function space. The origins of
this notion go back to foundations of quantum mechanics and Aarnes’ the-
ory of topological quasi-states, an interesting branch of abstract functional
analysis. In our context, nonlinear quasi-states on higher-dimensional man-
ifolds are provided by Floer theory, the cornerstone of modern symplectic
topology. Interestingly enough, symplectic quasi-states are closely related to
quasi-morphisms on the group of Hamiltonian diffeomorphisms Ham(M, w).
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Roughly speaking, a quasi-morphism on a group is “a homomorphism up
to a bounded error.” This group-theoretical notion coming from bounded
cohomology has been intensively studied in the past decade due to its var-
ious applications to geometry and dynamics. We discuss it in Chapter 3.
A recent survey of quasi-states and quasi-morphisms in symplectic topology
can be found in Entov’s ICM-2014 talk [57].

Quasi-states serve as a useful tool for a number of problems in symplectic
topology such as symplectic intersections, Hofer’s geometry on groups of
Hamiltonian diffeomorphisms, and Lagrangian knots. These applications
are presented in Chapter 6. In addition, quasi-states provide yet another
insight into robustness of the Poisson brackets, see Section 4.6.

Besides applications to some mainstream problems in symplectic topol-
ogy, function theory on symplectic manifolds opens up a prospect of using
“hard” symplectic methods in quantum mechanics. Mathematical quantiza-
tion and, mostnotably, the quantum-classical correspondence principle pro-
vide a tool which enables one to translate basic notions of classical mechanics
into quantum language. In general, a meaningful translation of symplectic
rigidity phenomena involving subsets and diffeomorphisms faces serious an-
alytical and conceptual difficulties. However, such a translation becomes
possible if one shifts the focus from subsets and morphisms of manifolds to
function spaces. We present some first steps in this direction in Chapter 9.

The book is a fusion of a research monograph on function theory on
symplectic manifolds and an introductory survey of symplectic topology. On
the introductory side, the first chapter discusses some basic symplectic con-
structions and fundamental phenomena, including the Eliashberg-Gromov
CY-rigidity theorem, Arnold’s symplectic fixed point conjecture, and Hofer’s
metric, while in the last three chapters the reader will find an informal crash
course on Floer theory. Even though our intention was to make the book as
self-contained as possible, the reader is encouraged to consult earlier sym-
plectic literature, such as the classical monographs [107,108] by McDuff and
Salamon. We also refer the reader to the manuscript by Oh [121] on Floer
theory. The reader is assumed to have familiarity with basic differential and
algebraic topology.

Most of the results presented in the book are based on a number of joint
papers by L.P. with Michael Entov. L.P. expresses his gratitude to Michael
for long years of pleasant collaboration. Furthermore, some central results
of the book are joint with Lev Buhovsky (Poisson bracket invariants and
symplectic approximation), Yakov Eliashberg (Lagrangian knots), and Frol
Zapolsky (Poisson bracket inequality and rigidity of partitions of unity).
L.P. cordially thanks all of them.

Parts of the material have been taught by L.P. in graduate courses at
University of Chicago and Tel Aviv University, in a lecture series at UCLA,
and (with the assistance of D.R.) in a mini-course at University of Mel-
bourne. We thank these institutions for such an invaluable opportunity. We
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are indebted to Strom Borman, Lev Buhovsky, Francois Charette, Adi Dick-
stein, Michael Entov, Morimichi Kawasaki, Asaf Kislev, Karina Samvelyan,
Egor Schelukhin, and Frol Zapolsky for very useful comments on the manu-
script, as well as to Dorit Aharonov, Peter Albers, Paul Biran, Paul Busch,
Danny Calegari, Yakov Eliashberg, Helmut Hofer, Vincente Humiliere, Gil
Kalai, Vadim Kaloshin, Yael Karshon, Guy Kindler, Dusa McDuff, Yong-
Geun Oh, Yaron Ostrover, losif Polterovich, Victor Polterovich, Dietmar
Salamon, Felix Schlenk, Paul Seidel, Sobhan Seyfaddini, Ivan Smith, Misha
Sodin, Shmuel Weinberger, Amie Wilkinson, and Jinxin Xue for illuminat-
ing discussions on various topics of the book. Additionally, we thank the
anonymous referees for very helpful critical remarks.

We are indebted to Andrei Iacob for a superb copyediting and very useful
critical comments and suggestions on the presentation, and to Carl Sperber
for correcting a number of grammatical and stylistic errors.

Finally, special thanks go to Francgois Lalonde, who encouraged us to
write this book.

This research has been partially supported by the National Science Foun-
dation grant DMS-1006610, the Israel Science Foundation grants 509/07 and
178/13, as well as the European Research Council Advanced grant 338809.
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CHAPTER 1

Three Wonders of Symplectic Geometry

This chapter is a mixture of a rapid introduction to symplectic topol-
ogy and a review of some of its landmark achievements. We mention three
wonders of symplectic topology, the first being the Eliashberg-Gromov (-
rigidity theorem [52,77], which is the first of several manifestations of sym-
plectic rigidity we will encounter in this book. The second is Arnold’s con-
jecture [4, 6] about symplectic fixed points, which served as a driving force
for many modern developments in symplectic topology, among them Floer
theory, to which we will return towards the end of the book. The third
wonder is Hofer’s geometry on the group of Hamiltonian diffeomorphisms
[85,95,131]. Lastly, we end the chapter with several examples of symplectic
manifolds and a brief discussion of J-holomorphic curves.

1.1. First wonder: CC-rigidity

Let M?" be a smooth connected 2n-dimensional manifold without bound-
ary, and let w be a closed 2-form on M which satisfies the following condition:

(1.1) wr=wA---Aw#0.
H,_/
n times

Then w is called a symplectic form, and (M,w) a symplectic manifold.

Note that w™ is a top degree form, and hence by (1.1) a volume form, so
in particular every symplectic manifold is orientable. The simplest examples
include orientable surfaces equipped with area forms and their products.
Here the product of two symplectic manifolds (M7,w;) and (Ms,ws) is given
by (M; x Ma,w; € wa). More sophisticated examples will be given at the
end of this chapter.

A diffeomorphism f of a symplectic manifold (M, w) is called a symplec-
tomorphism if f*w = w. The symplectomorphisms of (M,w) form a group
with respect to composition. We denote by Symp(M,w) the subgroup of all
symplectomorphisms f with compact support: fz = x for all points z out-
side a compact subset. By the C*-topology, for 0 < k < 00, on Symp(M, w),
and more generally, on the set of all diffeomorphisms of M, we mean the
strong Whitney C*-topology (see [84, Chapter 2]).

Note that symplectomorphisms are defined via their first derivatives,
and hence the group Symp(M,w) is by its definition C'-closed in the group
Diff(M) of all compactly supported diffeomorphisms of M. However, for
the same reason, a priori it is not obvious whether it is also C%-closed.

1



2 1. THREE WONDERS OF SYMPLECTIC GEOMETRY

A natural way to show that a certain class of transformations preserving
a given tensor field on a manifold is CY-closed is to characterize it by the
conservation of a “C%-robust” geometric quantity. Let us illustrate this by
the following two examples:

e Let (M, g) be a closed Riemannian manifold. The group Isom (M, g)
of all Riemannian isometries of (M, g) can be characterized by the preser-
vation of the Riemannian distance d(x,y) on M. If a sequence of diffeomor-
phisms fi, C%-converges to a diffeomorphism f, we have that d( fyx, fry) —
d(fz, fy) for all z,y € M. Thus if all f’s are isometries, then d(fz, fy) =
d(z,y), and therefore f is also an isometry. We conclude that Isom(M, g) is
C%-closed in Diff(M).

e Let (M, o) be an oriented manifold equipped with a volume form o.
The group Diff(M, o) of all compactly supported o-preserving diffeomor-
phisms of M can be characterized by the preservation of the volume [, o
of open subsets U C M. It is easy to conclude from this that Diff (M, o) is
C%closed in Diff(M).

Even though no obvious candidate for such a C%-robust quantity ex-
ists in the case of symplectomorphisms, the above phenomenon persists for
symplectic manifolds [52; 77, Section 3.4.4]:

Theorem 1.1.1 (Eliashberg—Gromov rigidity theorem). Let (M, w)
be a symplectic manifold. Then Symp(M,w) is C'-closed in the group of all
smooth compactly supported diffeomorphisms of M.

We shall prove this result in Section 2.2 below by using methods of
function theory on symplectic manifolds.

1.2. Second wonder: Arnold’s conjecture

1.2.1. Mathematical model of classical mechanics. Before study-
ing the properties of symplectic maps, a natural question to ask is whether
such maps exist at all. For instance, a generic Riemannian metric on a mani-
fold of dimension > 2 admits no isometries except the identity map (see, e.g.,
[152, Proposition 1]). It turns out that in symplectic geometry the situa-
tion is quite different: an infinite-dimensional group of symplectomorphisms
naturally arises within the mathematical model of classical mechanics. To
describe this, we first need to discuss some linear algebra.

Let E?" be a real vector space, equipped with an antisymmetric bilinear
form w: E x E — R. Define the map

I,: E—E*, £migw=w((,").

Exercise 1.2.1. Prove that the following conditions are equivalent:

(1) w™ £ 0.

(2) I, is an isomorphism.



1.2. SECOND WONDER: ARNOLD’S CONJECTURE 3

If the above equivalent conditions hold, F is called a symplectic vector
space. For a more detailed account of symplectic vector spaces, we refer the
reader to Chapter 4 in [107].

The basic example of a symplectic vector space is R?>", with coordinates
Pls---2Dns 1, - - -, n, €quipped with the symplectic form wg = ), dpi A dgy,
which we sometimes abbreviate to dp A dq. According to the classical Dar-
boux theorem, it provides a local model for the symplectic structure on an
arbitrary symplectic manifold:

Theorem 1.2.2 (Darboux). Let (M?*",w) be a symplectic manifold,
and let x € M. There exist local coordinates pi,...,Pn,s q1,...,qn nNEar x
such that in these coordinates we have w =), dpy A dg.

Thus, symplectic manifolds have no local invariants, in contrast with
Riemannian manifolds, which can be locally distinguished by their curvature
tensor. We refer to these local coordinates as a Darboux chart. For proofs,
see [107, Section 3.1] or [7, Section 43 B|.

In classical mechanics, a symplectic manifold (M, w) plays the role of the
phase space of a system. A mechanical system is described by its Hamilton-
ian, or energy function, H: M xZ — R. Here Z C R is a time interval which
is usually assumed to contain 0. According to a basic principle of classical
mechanics, the energy determines the time evolution of the system, in the
following way.

We denote H;(x) :== H(x,t). Define! the symplectic gradient, or Hamil-
tonian vector field, of H by

sgrad Hy; = —I}(dH,),

where I,,: TM — T* M is the bundle isomorphism obtained by applying the
isomorphism introduced in Exercise 1.2.1 fiber-wise. That is, for any vector
field n on M,

w(n,sgrad Hy) = dH(n).

The Hamilton equation is the following ordinary differential equation on M:
(1.2) &(t) = sgrad Hy(z(t)).

It gives rise to a one-parameter family of diffeomorphisms ¢4, : M — M, de-
fined by ¢4, (z¢) = x(t), where z(-) is the unique solution of (1.2) with initial
condition z(0) = xg. (On noncompact manifolds, some extra assumptions
on the behavior of H; at infinity are required in order to guarantee that the
solution z(t) exists for all t € Z.) The family {¢!,} is called the Hamiltonian
flow of H, and each diffeomorphism in the family is called a Hamiltonian
diffeomorphism.

Proposition 1.2.3. The flow ¢, preserves w.

' Different authors may use different signs in the definitions of certain notions playing
an important role in this book. This includes, in particular, Hamiltonian vector fields and
Poisson brackets.



4 1. THREE WONDERS OF SYMPLECTIC GEOMETRY

PROOF. The proof is a straightforward computation using Cartan’s for-
mula (we use the notation Lx for the Lie derivative with respect to the
vector field X):

d ./ 1 .
a((ptH)*w = ((bi{)*csgradl-!tw = (Cbs-l) (dlsgradHtW =+ tsgrad H, dw )
N =0
= (¢3)"(—d*Hy) = 0.
Hence, (¢Y;)*w = (¢%)*w=w for all t € T. O

Therefore, any Hamiltonian diffeomorphism is a symplectomorphism of

(M,w).

Example 1.2.4. Consider R?" with the standard symplectic form wy =
dp A dg. We interpret ¢ as the position vector, and p as the momentum. In
this case the Hamilton equation (1.2) takes the form

. OH
Qz apza
. _ 0OH
pi B

Consider the particular case of the motion of a particle with mass m in R"(q),
in the presence of a potential U(q) which depends only on the position. The
force in this case is F' = —9dU/dq. The velocity of the particle is ¢ and its
momentum is defined by p = mgq. The Hamiltonian of the particle is its
total energy H(p,q) = K(p) + U(q), where

1 p?
K =-mg?="—
2" = o
is the kinetic energy. Thus,
P2
H(p,q) = — 4+ Ul(q).
(p.g) =5~ +Ulg)
Hence, Hamilton’s equations are
. P
q=—)
m
ou

Combining these two equations, we obtain Newton’s second law: mqg = F'.
The passage from solving Newton’s equation, a second order ODE in the
configuration space R", to Hamilton’s equation, a first order ODE in the
phase space R?", brings classical mechanics into the framework of the theory
of dynamical systems.

One of the first important results in classical mechanics was Liouville’s
theorem, which states that the time evolution of a mechanical system under
Hamilton’s equation preserves volume in the phase space. Since the natural



