Microesoft

S A o B -

CODING TECH‘ 2 MICROSOFT

VISUA BASIC . NET

} Microsoft ,
‘.het W s2fM0xem=3) John Connell

i

Microsoft

JODING TEC

VISUAL

crosoft’,

net John Connell

This book is dedicated to my mom and dad, Mercedes and John W. Connell.
They provided me with unwavering support during this project, as they
haye in all my pursuits. My two sons, Garrett and Grady, of whom I am
immbasurably proud, as well as my baby sister, Patricia, were alsc there to
provide moral support and bumor during the long hours.
Thanks, guys, I couldn’t have done it without you.

Acknowledgements

- !

Special thanks to Keith D. Adams, childhood friend and Renaissance man; Mr.
Morgan Gasior and his computer-scientist wife, Darlene, who provided an
endless supply of visionary ideas and showed me the sky; John Dilenschneider,
gentleman and computer scientist extraordinaire, for his guidance and
friendship; my long-time mentors—Dean Helmut Epp, Ph.D., Dr. Martin Kalin,
and Dr. David Miller—for their wit, intelligence, and vision; and Jeff Optholt for
seeing things as they really are.

Extra special thanks to John Pierce and Jim Fuchs of Microsoft Press.
These two gentlemen worked tirelessly and with impeccable professionalism to
make this book into something special. Thanks, John and Jim. In spite of the
hard work, you both made this project fun and never lost patience.

XV

Introduction

Over the years, I've been fortunate to design and write production programs
with Microsoft Visual Basic that are currently in use at several Fortune 500 com-
panies in the United States. I also teach, hire, and manage technical profession-
als, which has given me insight into the minds of many Visual Basic
programmers. In my university classes, I have seen over and over those aspects
of programming with Visual Basic that make sense to programmers, as well as
areas such as object-oriented programming that some programmers find a bit
confusing. Coding Techniques for Microsoft Visual Basic .NET will take you to
the next level of programming, lifting the veils from the areas of programming
you're unsure of while enhancing your knowledge of the areas that you already
work with every day.

- !

Who This Book Is For

This book was written for Visual Basic programmers by a Visual Basic program-
mer. In my description of how to work with Visual Basic .NET, I first build a
foundation, providing background about the changes in computing and soft-
ware development that make knowing about the Microsoft .NET Framework of
vital interest to programmers as well as a practical necessity. I cover the essen-
tials of object-oriented programming in Visual Basic .NET and explain how to
build your own classes and work with the .NET Framework classes, how to
work with arrays and collections, and how to debug and handle errors in your
programs. From our foundation, we climb to the next level. I cover the details
of how to work with .NET assemblies, how to work with files and data streams,
and how to monitor files over a network, including how to build a Windows
service application that runs on a server. In three full chapters I cover how pro-
gramming for data access has changed with Visual Basic .NET and ADO.NET.
Then we move to the world of Web services—programs and components
designed to run on the Internet. In the last chapter, I bring together what's been
covered throughout the earlier chapters. Along the way, you'll see plenty of
useful and interesting sample code.

xvii

Xviii Introduction

Learning Visual Basic .NET by Writing Working Programs

In most computer books I've read, regardless of the programming language
they cover, the author provides academic snippets of code to illustrate a point
or construct. This approach is helpful, but it leaves readers wondering how one
piece of code fits into the larger scheme of a full working program. I've found
that the best way to learn a new computer language such as Visual Basic .NET
is to write full working programs in that language. Having a goal in mind—and
writing a program to solve a problem—engages many dimensions of a pro-
gramming language and also solidifies how the pieces fit and work together. I
take this approach in this book, walking you through several sample applica-
tions that illustrate important points about Visual Basic .NET.

If you're coming to Visual Basic .NET from another programming lan-
guage—such as C, C++, Java, or even COBOL—it won't take long until you feel
right at home. The Microsoft .NET Framework is the wave of the future, and
Visual Basic programmers are the best prepared to take advantage of this new
technology. Coding Techniques for Microsoft Visual Basic .NET will make you
proficient in the fundamentals of .NET technology, and I'm confident that you’ll
quickly see the power and ease of what can be accomplished with .NET and
will start to look at programming in an exciting new way. Last but not least,
you'll have fun in the process. '

What’s in Coding Techniques for Microsoft Visual Basic .NET?

In the list that follows, I describe the highlights of each chapter, summarizing
what you'll learn as you progress through the book.

H Chapter 1, Visual Basic from the Ground Up. I start off by exam-
ining and explaining .NET and why it's a revolutionary (instead of an
evolutionary) approach to programming for the twenty-first century.
One of the major benefits of the .NET Framework is its capability to
write a program once that can automatically target any hardwarg or
operating system. This flexibility is crucial at a time when program-
mers need to create applications for desktop PCs as well as applica-
tions for the Internet. I review the evolution of Visual Basic from the
computer language that skyrocketed Windows programming into the
mainstream all the way to Visual Basic .NET. I explain at a high level
some of the key features of the .NET Framework, such as the class
framework, the common language runtime, Web services, assem-
blies, and the new Visual Studio .NET interactive development envi-
ronment (IDE)—the cockpit that you'll use when working with these

- !

Introduction

new capabilities. You'll get your first look at some Visual Basic .NET
code to give you a sense of what's required to write a Visual Basic
NET program. After reading Chapter 1, you'll have a good under-
standing of where we're going and what’s important.

Chapter 2, Object-Oriented Programming in Visual Basic .NET.
Visual Basic .NET is now a fully object-oriented language, so it finally
joins the ranks of the so-called sophisticated languages, such as C++
and Java. If you are new to object-oriented programming, you'll find
this chapter an easy way to get up to speed. To illustrate how objects
are spawned from classes, I use a simple Visual Basic .NET form and
illustrate properties and methods, inheritance, and namespaces. I
also cover shared variables, overloading, polymorphism, and encap-
sulation. Because a large part of the power of .NET comes from the
base classes supplied by the .NET Framework, I show how to use the
various namespaces and how to access this built-in functionality.

Chapter 3, Writing Your First Class. Following up on Chapter 2, in
Chapter 3 I explain how to write your own class and then how to
create a second class that inherits from the base class. You'll also
learn about the imports directive, how to add an assembly to a
project, how to work with shared member variables, and why and
when to use the Option Strict and Option Explicit directives. While
building a class, you'll use overloaded constructors that permit you
to initialize an object upon instantiation. At the conclusion of Chap-
ter 3, object-oriented programming will be demystified, and you'll be
pleasantly surprised at how compelling it really is.

Chapter 4, Visual Basic .NET Data Types and Features. While
understanding reference and value (primitive) data types in earlier
versions of Visual Basic was helpful, understanding these concepts
in Visual Basic .NET is crucial because of the way objects—and
everything is an object in .NET—are compared and initialized. Data
types in .NET are strongly typed (each variable must have a specific
data type) and are also type safe (you can only access a variable
through its data type). When a variable is no longer needed, it is
flagged for deletion by a nondeterministic finalization algorithm,
euphemistically known as garbage collection. If you have always set
your reference variables to Nothing, you'll be interested in the way in
which Visual Basic .NET handles freeing up resources and memory.
Upon completing Chapter 4, you'll have a good grasp of how variables
are brought to life, initialized, and disposed of in Visual Basic .NET.

Xix

XX

Introduction

Chapter 5, Examining the .NET Class Framework Using Files
and Strings. The .NET class framework’s object-oriented, hierarchi-
cal class library is the powerhouse behind .NET. Starting with
namespaces, I cover the framework from the ground up, explaining
how the framework is organized and using some concrete examples
to examine exactly how .to work with it. For those of you new to
object-oriented programming, this chapter will show precisely how
to find what you need in the framework and exactly how to use it.
Using a built-in tool, the Windows Class Viewer, you’ll master the
depth and breadth of the framework and learn techniques to quickly
zero in on what you need. In the process, I describe the C# class
notation used to designate parameters, overloaded constructors and
methods, and return types. In the chapter’s main example, I show
how the file and stream classes are accessed from the framework and
used to read and write to disk. I also examine strings and their new,
immutable nature. The techniques for copying, cloning, and format-
ting strings are illustrated and explained.

Chapter 6, Arrays and Collections in Visual Basic .NET. As you
might expect, arrays are handled differently in Visual Basic .NET
than in earlier versions of Visual Basic. The .NET Framework class
System.Array is the base class for all array types. Because arrays are
objects (what isn’t?), each array you create will have its own knowl-
edge of how many elements it contains, how many dimensions it has
included, its boundaries, and so forth. Best of all, by using the Sys-
tem.Array Sort method, Visual Basic arrays can now be sorted and
reversed automatically. Not only that, .NET arrays can be searched
using various approaches such as the built-in binary search. I'll cre-
ate a calculator program that translates numbers to Roman numerals
to illustrate arrays. While an array is really a simple collection, a col-
lection is a group of objects. A collection can be inherited from the
System.Collection namespace of the .NET Framework. The Collection
namespace contains interfaces and classes to create new obj'écts
such as array lists, hash tables, queues, stacks, and dictionaries.
Some of these data structures might be new to Visual Basic program-
mers. I wrap up Chapter 6 by writing a program that mimics a non-
deterministic Rogerian psychologist. I use some advanced features of
NET arrays to accomplish this. Users can run this fun project to
examine the psychology of human/machine interaction with Visual
Basic .NET.

Introduction

Chapter 7, Handling Errors and Debugging Programs. Errors
don’t crash programs, but unhandled errors do. Errors (syntax, run-
time, or logic) can occur at any time, and when they do an exception
is thrown. Visual Basic .NET uses a structured T7y...Catch...Finally
construct to replace the unstructured Goto ErrorHandler used in pre-
vious versions of Visual Basic. Structured error handling is built into
the core of the .NET Framework, so its power is immediately avail-
able to us. In this chapter, I use the calculator program from Chapter
6 and show everything that can go wrong in the program and how to
use structured error handling to deal with each potential error. I also
examine the debugger. The Visual Studio .NET IDE provides pro-
grammers with several debugging windows that give them a clear
view on everything from variable values to assembly code in a run-
ning program. We’ll write a generic error handling class, Error-
Trace.vb, that provides trace logs and can be added to any Visual
Basic .NET program. I finish this chapter by showing how to write to
the Windows NT or Windows 2000 event log from a Visual Basic
NET program. ’ ’

Chapter 8, Assemblies in Detail. Assemblies are the building
blocks of Visual Basic .NET programs. They are the fundamental unit
for deployment, version control, reuse, and security. In this chapter,
I build a program, named AssemblySpy, that examines the internals
of any .NET assembly written in a .NET-compliant language. This
program uses new graphical .NET controls for its user interface and
provides information on static and instance fields, properties, events,
methods, and constructors. I describe the benefits of private and
shared assemblies as well as the reasons for creating “strongly
named” assemblies for versioning and sharing. Strongly named
assemblies allow for side-by-side execution so that two assemblies
with the same name can run in the same directory. Microsoft .NET
programs compiled against an assembly with a strong name know
which assembly to use, thus eliminating DLL conflicts that have
plagued Windows programming.

Chapter 9, File System Monitoring. Built into the .NET Frame-
work, in the System.JO namespace, is the FileSystem Watcher class.
This class fires events when files or directories are changed, created,
deleted, or renamed. I'll examine this class in detail by adding it to a
class we'll build, named SystemObserver, that inherits from FileSystem-
Watcher. T'll also explain the new notion of delegates, which permit

xxi

xXii

Introduction

programmers to define and react to their own events. I'll add delegates
to the SystemObserver class that respond to events of FileSystem-
Watcher. We'll also build a Windows program named File Sentinel
and import the SystemObserver class. This program provides a user
interface that permits a user to select files or directories. File Sentinel
can monitor any file or directory (such as a cookies file) and notify
you when something important happens. At the end of this chapter,
I show you how to develop a Windows Service application (formerly
known as an NT service). We'll turn the SystemObserver class into a
Windows service to illustrate the reusability of our code.

Chapter 10, Data Access with ADO.NET. ADO.NET components
have been redesigned to provide a more consistent object model
while also providing increased scalability for Internet programming.
This is accomplished by using the new disconnected DataSet object,
which provides a common way to represent and manipulate data on
a client. Where traditional data access programming held a connec-
tion to the data store, ADO.NET is completely disconnected. This
approach uses what are known as managed providers, which
include a connection object, a command object, a DataReader
object, and various DataAdapter objects. The most compelling
aspect of ADO.NET is that the in-memory data set now represents its
contents in text-based XML, which can be passed back and forth
through any HTTP port 80 firewall, making data sharing between
heterogeneous and non-Windows systems a reality.

Chapter 11, Data Sets in Detail. In this chapter, I delve deeper into
the ADO.NET object model. I start by writing a program that illus-
trates how data sets represent their contents in XML, examining both
the schema and the XML representation of the data. I show how data
is manipulated locally and how changes are then written back to the
source. I also demonstrate how to use a tool supplied with Visual
Studio .NET, Xsd.exe, that can take an XML file (say from a new v&n-
dor) and generate an XML schema definition (XSD) file from it. The
XSD file can then be used to create a Visual Basic .NET class that
knows how to add, delete, and modify the previously unknown XML
file. Next we programmatically build a DataTable object in a data set
and dynamically add a relationship between fields to build a parent/
child relationship. The data from the data set is persisted to disk in
XML, and then a data grid control is used to reconstitute the data
from the XML file. The data grid does not know or care whether the

forey |

Introduction

information comes from a database or an XML file—in either case it
has all the information it needs to build itself. A look at the new Data-
View object illustrates how you can create two separate views of a
single data table.

Chapter 12, ADO.NET Data Binding. This chapter completes our
examination of ADO.NET by reviewing the BindingContext object.
Because an ADO.NET disconnected recordset does not have an
explicit implementation of a cursor, I describe how to navigate
among records with the BindingContext object and its related Cur-
rencyManager objects. I walk through a program that navigates
among records in a single table to show how this is done. I wrap up
the chapter by building a table programmatically and adding records
to it. We search for specific records in the table and manipulate them.

Chapter 13, ASP.NET and Web Services. In Visual Basic .NET, you
can build a Web Form with the same ease as a Windows Form. The
same, consistent object model is used. I'll examine how ASP.NET
provides a simplified development experience while also providing
improved scalability. I look at the new server-side graphical controls
as well as the new “code behind” concept, which lets you separate
code for business logic from code for the user interface. We build a
working ASP.NET loan calculator program to fully review Web
Forms, object state, server-side controls, postbacks, field validators,
variable caching, data binding to a dynamically built data table, and
more. Moving on to Web Services, you'll see how SOAP (Simple
Object Access Protocol) breaks down protocol-specific barriers by
sending plain text that triggers API methods on remote servers. Web
services can advertise their APIs and data types by utilizing the Web
Services Description Language (WSDL). I illustrate these concepts
with a sample program that uses a Magic 8 ball and a Windows pro-
gram that consumes the Magic 8 ball Web service. Creating and con-
suming Web services are my favorite parts of Visual Basic .NET.

Chapter 14, Visual Inheritance and Custom Controls. As you
found out early on, everything in Visual Basic .NET is an object,
including Windows forms. Because we can inherit from an existing
object, in this chapter we’ll build a standard form that provides a
consistent look and feel and then inherit from the base form to build
identical child forms. We will also build a custom Visual Basic .NET
control. I wrap up the book with a fun project that takes just about
everything you've learned in the book and puts it to use—a program

xxiii

XXiv Introduction

that places electronic yellow sticky notes on your computer screen.
The program automatically saves a note’s contents, size, and location
and reconstitutes any existing sticky notes when the program is run
the next time. I describe how to deploy Visual Basic .NET programs
and create a setup project that will deploy our sticky notes project on
any Windows 2000, Windows ME, or Windows XP machine, even if
the .NET common language runtime is not yet installed.

About the Companion CD

All the sample code is on the companion CD that accompanies this book. The
code has been tested using post beta 2 builds of Microsoft Visual Studio .NET
and running on Microsoft Windows 2000 Server with Service Pack 2 installed.
To use the Web Forms samples, Internet Information Services (IIS) must be
installed. You should install IIS before you install Visual Studio .NET. If you
install Visual Studio .NET first, you might see the following error message:

Error while trying to run project: Unable to start debugging on the Web
server. The server does not support debugging of ASP.NET or ATL Server
applications. Run setup to install the Visual Studio .NET server compo-
nents. If setup has been run verify that a valid URL has been speci-
fied.

You may also want to refer to the ASP.NET and ATL Server debugging
topic in the online documentation. Would you like to disable future
attempts to debug ASP.NET pages for this project?

To fix this problem try the following steps (see the Visual Studio .NET
online help for more information):

1. Make sure IIS and the Microsoft FrontPage 2000 Server Extensions
are installed using Add/Remove Windows Components in Add/
Remove Programs.

2. Uninstall the .NET Framework in Add/Remove Programs.

3. Rerun Visual Studio .NET setup, and reinstall the .NET Framework s

The sample programs developed in Chapters 10, 11, and 12, about
ADO.NET, also require Microsoft SQL Server 2000, and one sample program
requires Microsoft Access 2000 or Microsoft Access 2002. You must have suffi-
cient rights to install and run these applications.

Note that the final version of Visual Studio .NET was not available when
this book went to press. The programs were tested against Visual Studio .NET
release candidate 2, but changes in the final version might require small modi-
fications to the sample programs.

Introduction XXV

System Requirements

-

You'll need the following software to run the samples included or. the compan-
ion CD:

B Microsoft Visual Studio .NET

B Microsoft Windows 2000 or Microsoft Windows XP
B IIS 5 or later

B Microsoft SQL Server 2000

|

Microsoft Access 2000 or Microsoft Access 2002

Do You Have Any Questions?

Every effort has been made to ensure the accuracy of this book and the con-
tents of the companion CD. Should you run into any problems or issues, refer
to the following resources:

Microsoft Press provides corrections for books through the World Wide
Web at:

bttp.//www.microsoft.com/mspress/support/

If you have comments, questions, or ideas regarding this book or the com-
panion CD, please send them to Microsoft Press using either of the following
methods:

E-mail:

mspinput@microsoft.com

Postal Mail:

Microsoft Press

Attn: Coding Techniques for Microsoft Visual Basic .NET Editor
One Microsoft Way

Redmond, WA 98052-6399

Please note that product support is not offered through the above
addresses.

Lttt R EP R R EED LR

Reprint authorized by Microsoft Corporation.

Copyright 2001 by Microsoft Corporation.

Original English Language edition Copyright © 2001 by John Connell
All rights published by arrangement with the original publisher,
Microsoft Press, a division of Microsoft Corporation,

Redmond, Washington, U.S.A.

Microsoft Press books are available through booksellers and distributors worldwide. For further informa-
tion about international editions, contact your local Microsoft Corporation office or contact Microsoft
Press International directly at fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress.
Send comments to mspinput@microsoft.com.

Active Directory, ActiveX, BizTalk, FrontPage, IntelliSense, JScript, Microsoft, Microsoft Press, MS-
DOS, the .NET logo, Visual Basic, the Visual Basic logo, Visual C++, Visual C#, Visual Studio, Win32,
Windows, and Windows NT are either registered trademarks or trademarks of Microsoft Corporation in
the United States and/or other countries. Other product and company names mentioned herein may be the
trademarks of their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logo!s, people, places,
and events depicted herein are fictitious. No association with any real company, organization, product,
domain name, e-mail address, logo, person, place, or event is intended or should be inferred.

Acquisitions Editor: Danielle Bird
Project Editor: John Pierce
Technical Editor: Jim Fuchs

Body Part No. X08-05019

Table of Contents

Acknowledgments XV
Introduction Xvii
1 Visual Basic .NET from the Ground Up 1
. What a Long, Strange Trip It's Been
¥ From COM to .NET
The .NET World

Why You Need to Learn Visual Basic .NET
What Are the Pieces and How Do They Fit Together?

(o= 2w S)

A .NET Framework Overview 9
Web Services 11
User Interface v "
Data and XML 12
Base Class Library 12
Common Language Runtime 13
Where Do We Start to Access Functionality from Visual Basic
.NET Source Code? 15

Visual Basic .NET Is Object Oriented 16

A Brief Look at How the Visual Basic .NET Language Works 18

How Is a Visual Basic .NET Program Put Together? 20
Metadata—Data About Data 20
The Just-In-Time Compiler 21
Execution of Visual Basic .NET Code 22
Assemble the Troops 23

Configuring the Interactive Development Environment 23

A First Look at the Visual Basic .NET IDE 25
Some Visual Basic .NET Code 27
Files Created by the IDE for Our First .NET Program 33
Another Word on Assemblies 38

A Closer Look at the Code 41
You Mean | Get an Inheritance? 4
Starting Up Our Form1 Class 42
Warning! Don't Fiddle with the Designer’s Code 46

Vi Table of Contents

The Big Event 47
Nothing but .NET 48
2 Object-Oriented Programming in Visual Basic .NET 49
An Object Lesson 49
Starting Out with Objects 50
A Class Is Really Only a Blueprint 50
Let’s Talk Objects 51

Our Form as an Object 52
Reading, Writing, Invoking 54
Inheritance 56
Understanding Namespaces 58
Inheriting from System.Windows.Forms.Form: Forms and Controls 62

A Word About Visual Basic .NET Controls 63
Check Out the Code 65

The Code Added for the Button 67
Enough Talk: Press F5 and Run Your Program 69
The Doppelganger Program: Creating Clones of the Form1 Class 70
Important Object Concepts from the Doppelganger Program 71
Using the Class View to Spy on Structure and Access Modifiers 76
More About Access Types - 78
Overloading Methods 79
Some of the Overloaded Show Methods 81
Polymorphism 83
What’s Controlling Our Form When We Run It? 84
Try This Out 84
Your First Real Visual Basic .NET Program 86
Telling the Application Object Which Formto Run 88
Let's Add Some Controls 7 90
Examining the Handiwork of the IDE-Generated Code . 94
How Do We Hardwire the Controls? 98

Can You Name That Namespace? 98
Date and Time Arithmetic 99
Formatting the Date and Time 101
Let's Run This Baby! 103

Conclusion 105

Table of Contents vii

3 Writing Your First Class 109
Creating the Employee Class 110
Examining the Class Code 113

Our Class’s Namespace 118

Declaring Our Class 118

Using Shared Variables 120

Class Constructors 120

3 Overloading Constructors 121
MyBase.New 122

Assigning Values to Our Private Data Fields 123

Overriding 124

#Region 126

The Employee Class Properties 127

More About Inheritance 130

Virtual Methods 134
Synchronizing the Class View 134
Creating Instances of the Employee Class 136
Conclusion 140

4 Visual Basic .NET Data Types and Features 143
Getting to Know Data Types 143

Visual Basic .NET Data Types 144

Value Types 145

Reference Types 147

Data Type Features 148

The System.Object Class 149

Strong Typing 152

Type Safety 152

Data Widening 157

Garbage Collection: Getting Rid of Our Objects 160

The Stack and the Managed Heap 160

Conclusion 161

5 Examining the .NET Class Framework Using Files and Strings 163
What Exactly Is the .NET Framework? 164
Tapping into the .NET Framework 165

It All Starts with the System Namespace 165

