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Asymptotic Behavior of the Pollaczek Polynomials
and Their Zeros

By Bo Rui and R. Wong

In 1954, A. Novikoff studied the asymptotic behavior of the Pollaczek poly-
nomials P,(x;a, b) when x = cos(t/+/n), where t > 0 is fixed. He divided the
positive ¢-axis into two regions, 0 < ¢t < (a + b)"/? and ¢ > (a + b)'/2, and de-
rived an asymptotic formula in each of the two regions. Furthermore, he found
an asymptotic formula for the zeros of these polynomials. Recently M. E. H.
Ismail (1994) reconsidered this problem in an attempt to prove a conjecture
of R. A. Askey and obtained a two-term expansion for these zeros. Here we
derive an infinite asymptotic expansion for P,(cos(#/4/n);a, b), which holds
uniformly for 0 < ¢ <t < M < o0, and show that Ismail’s result is incorrect.

1. Introduction

In 1949 E Pollaczek introduced a remarkable generalization of the Legendre
polynomials. These polynomials P,(x; a, b) show in many respects a singular
behavior; see [14, p. 393-396]. They are most easily defined by the generating
function

f(x,w) = f(cosf,w) = iP,,(x; a, b)w"
srd) (1.1)

—_ (1 . wei())—l/2+ih(9)(1 . we—iﬂ)—l/Z-ih(G)’

Address for correspondence: Professor R. Wong, Department of Mathematics, City University of Hong
Kong, Tat Chee Ave., Kowloon, Hong Kong.
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where

acosf + b

h —
(6) 2sinf ’

a> +b. (1.2)

They reduce to the Legendre polynomial in the limiting case a = b = 0.

In 1954, A. Novikoff [12] wrote a well-known thesis on the asymptotics
of these polynomials and their zeros. More specifically, he investigated the
asymptotic behavior of P,(x; a, b) as n — oo, where x = cos(t/+/n) and t > 0
is fixed. He divided the positive ¢-axis into two regions 0 < ¢ < (a +b)"/? and
t > (a+b)"?, and derived an asymptotic formula in each of the two regions.
Furthermore, if the zeros of these polynomials are denoted by cos 6, where
0<8,,<--<8,, <m, then he showed that for any fixed »

lim n'26,, = (a + b)". (1.3)
n—oo
More recently R. A. Askey conjectured that the next term in the asymp-
totic expansion of 6, will involve zeros of a certain transcendental function.
In an attempt to prove this conjecture, M. E. H. Ismail [10] derived a two-
term expansion for 6,,, whose second term involves a zero of the entire
function

vn?

i
F(¢) = fo (1 — v?)"2e(@ 07 cos( £v)dv.

A drawback of Ismail’s result is that F(£) is not one of the familiar special
functions of mathematical physics. Consequently, not much is known about
the zeros of this function.

The purpose of this paper is to present an infinite asymptotic expansion
for P,(cos(t/+/n);a, b), involving the Airy function and its derivative, which
holds uniformly for 0 < & <t < M < oo. Moreover, we show that 6, has
the two-term asymptotic expansion

o = a+b % (a+ b)"5(-a,) +0(L)’ (1.4)

¥ n 2ns/6 nl/6

where aq, is the »vth negative zero of the Airy function Ai(-). This result
contradicts that of Ismail given in [10].

Our approach here is in spirit similar to that used in the derivations of
the uniform asymptotic expansions of Laguerre polynomials [7] and Charlier
polynomials [3]. However, the details of analysis in this paper, and especially
in the discussion of the transformation (3.10) in Section 3, are quite different,
and in fact are more difficult than those in the two previous papers.
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2. Novikoff’s results

From (1.1), one has by the Cauchy integral formula

1 f(cosé, z)
P (x; =— [ ————d 2.
n(x’ a, b) 211_[- Z"+1 'z’ ( 1)
c
where C is a positively oriented simple closed curve surrounding z = 0 and
not containing the branch points z = ¢*. In view of the reflection formula

(12, p. 7]
P,(x;a,b) = (-1)"P,(—x;a,—b), (2.2)

one may also assume without loss of generality that 0 < 6 < #/2. In [12],
Novikoff took C to be the contour C; shown in Figure 1. This contour consists
of a large circle of radius R > 1, two small circles of radius § « 1, and two
doubly traversed straight line segments, one vertical and one horizontal. The
large circle is oriented in the counterclockwise direction, and the two small
circles are oriented in the clockwise direction, so that z = 0 lies inside the
region bounded by C,, and z = e** lie outside this region. It can be shown,
as in [12], that the integral along the large circle |z| = R and the two small

Figure 1. Contour C;.
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circles |z — ¢*?| = & vanish as 8 — 0 and R — oo. The contribution along
the horizontal line segment z = cosf + 7, 0 < 7 < R, is also zero, since
f(x, w) has the same value on this portion of the contour in either direction.
Thus, the only contribution to the integral in (2.1), which does not vanish
when 8§ — 0 and R — oo, comes from that portion of the integration path
lying along the two sides of the cut z = cos 6 + iasin 6, —1 < a < 1, joining
the two branch points ¢ and e, Novikoff showed that along the left edge
of the cut

14 o\ O
flx 2) = gh-—2a)e) (—1 ) (sin 8)~'(1 — az)'”z, (2.3)
-
where arg((1 + «)/(1 — a)) = 0if —1 < a < 1, and that this value is changed
by a factor —e~2™(®) along the right edge of cut. As a result, he obtained the
integral representation
P,(cos 6;a, b)

_ e 20 cosh(wh(0)) (" (14 a)/(1 —a))™® da
- " _1 (cos @+ iasin @) (1 —a?)l/2’

(2.4)

where log((1 4+ a)/(1 — «)) has to be taken as real for —1 < « < 1. This in-
tegral is an analogue of the Laplace integral representation for the Legendre
polynomial, which it includes as a special case if a = b = 0.

To approximate P,(cos 8;a, b) when 6 = t//n and n is large, Novikoff
noted that

t a+b 1
h(0)=hl—)=—— ol — 25
@=h(7) = 5m+o(7) &
and
t t 1—a? 1
-(n—l—l)log(cos ﬁ-!-ia sin ﬁ) = —iat/n+ 2(1 [2+0(ﬁ)' (2.6)
Hence by putting
a+b 1+a
=at — 2.7
h(a,t) = at T log T (2.7)
the last integral can be approximated by the simplified integral
1 1— a2
J— / exp'—iﬁh(a, N+ l(1-ad) Ve (@28)
-

To the integral J, Novikoff applied the method of steepest descent [5, p. 65],
which consists of finding the saddle points of A(«, ), i.e., the zeros of

dh _ ;9 +b6 1

da t 1—-a?’
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and deforming the linear path of integration into an appropriate one passing
through the saddle points. The saddle points of 4 are given by

a, =+(1—r2(a+b))" (2.9)

They are distinct as long as 1> # a+b. If t* > a+b then a, and a_ are real.
If > < a+b then a, and a_ are conjugate imaginary. In both cases, a, and
a_ are symmetrically located with respect to the origin @ = 0. By considering
these two cases separately, Novikoff obtained the following results:

P,(cos(t/+/n); a, b)
_ %ﬂ,_uz(a +b— 2y exp(—%(a + b))

.n-1/4exP{ 1/2(’;“+b+;\(t))](1+0( 11/4)), (2.10)

A(2) = ayt — a+barc tan a,, (2.11)

ay=t"a+b-1H"?,  0<t<(a+b)/? (2.12)

and
P,,(cos(t/«/i_z);a, b)
=7 22 —q-b)y* exp(—%(a + b))

n']/“exp{ 1/2(17 jb)]cos(%—n”zp,(t))+0(%), (2.13)

1
u(t) = oyt — v log +a1, (2.14)
2r 1- ay
a; =t7Y(t* —a - b)'"?, t> (a+b)'"2% (2.15)

3. Reduction to a canonical integral

For our purpose, we take C in (2.1) to be the contour C, shown in Figure 2,
which consists of a large circle oriented in the counterclockwise direction, two
small circles oriented in the clockwise direction, and two doubly traversed
vertical infinite half-lines emitting from the branch points z = ¢’ and z =
e,

As in [12], it can be shown that the integral along the large circle vanishes
as R — oo. For the integral along the remaining portion of the contour, we
make the change of variable z = cos 6 + iasin 8, which is simply a linear
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Figure 2. Contour C,.

transformation consisting of a translation, a rotation, and a rescaling. The
two vertical cuts in the z-plane are now mapped into the two horizontal half-
lines along the real axis in the a-plane, one extending from ¢ = 1 to @ = 400

and the other from @ = —1 to @ = —o0. In the cut a-plane, it can be shown
that

(3.1)

ih(8)
F(cos 8, 7) = e(T-2004(0) (liﬁ) 1

(1 - a?)2sing’

where arg((1 + @)/(1 —@)) =0 if —1 < a < 1; compare with (2.3). Conse-
quently, the integral (2.1) can be written as

P,(cos 6;a, b)
_ e(«r—zs)h(e)ﬂ[[(m +[(-1+)] [(1+ a)/(1 — )] p (3.2)

2mi (cos 6 + iasin )*+1(1 — a2)1/2 7"

l—a

where the loop paths of integration are as indicated in Figure 3.

Wi

N G

0

\ 4

Figure 3. «a = plane.



