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To the Third Edition

The text has been changed mostly by the addition of a large number of
worked-out examples, and the rewriting of some sections.

Because many students from high schools have often been exposed to
some calculus, one can cover the material more rapidly than used to be
the case. Nevertheless, I have decided to preserve the first two chapters,
for the convenience of those coming to the study of Calculus with shaky
background.

It will also be frequently useful to cover during the first year those por-
tions of the theory of differentiation in several variables which can be
handled essentially by one-variable methods, combined with a minimum
from the theory of vectors. Hence I have included in the present volume
four chapters from the second course, Calculus of Several Variables,
dealing with that part of the subject.

The increase in size of the book from its first edition is due to the factors
mentioned above, and seems justified in view of the increased flexibility
as a text.

SERGE LANG
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Foreword

The purpose of a first course in Calculus is to teach the student the
basic notions of derivative and integral, and the basic techniques and
applications which accompany them.

At present in the United States, the trend is to introduce Calculus in
high schools, and I agree that the material covered in the present book
should ultimately be the standard fare of the last two years of secondary
schools.

Irrespective of when it is taught, I believe that the presentation remains
more or less invariant. The very talented student, with an obvious apti-
tude for mathematics, will rapidly require a course in functions of one
real variable, more or less as it is understood by professional mathema-
ticians. This book is not primarily addressed to him (although I hope he
will be able to acquire from it a good introduction at an early age).

I have not written this course in the style I would use for an advanced
monograph, on sophisticated topics. One writes an advanced monograph
for oneself, because one wants to give permanent form to one’s vision of
some beautiful part of mathematics, not otherwise accessible, somewhat in
the manner of a composer setting down his symphony in musical notation.

This book is written for the student, to give him an immediate, and
pleasant, access to the subject. I hope that I have struck a proper com-
promise between dwelling too much on special details, and not giving
enough technical exercises, necessary to acquire the desired familiarity
with the subject. In any case, certain routine habits of sophisticated
mathematicians are unsuitable for a first course.

This does not mean that so-called rigor has to be abandoned. The
logical development of the mathematics of this course from the most basic
axioms proceeds through the following stages:

Set theory

Integers (whole numbers)
Rational numbers (fractions)
Numbers (i.e. real numbers)
Limits

Derivatives

and forward.
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No one in his right mind suggests that one should begin a course with set
theory. It happens that the most satisfactory place to jump into the sub-
ject is between limits and derivatives. In other words, any student is
ready to accept as intuitively obvious the notions of numbers and limits
and their basic properties. For some reason, it has become fashionable to
hold that the best place to enter the subject is between numbers and
limits. Experience shows that the students do not have the proper psycho-
logical background to accept this, and resist it tremendously.

In fact, it turns out that one can have the best of both ideas. The argu-
ments which show how the properties of limits can be reduced to those of
numbers form a self-contained whole. Logically, it belongs before the
subject matter of our course. Nevertheless, we have inserted it as an
appendix. If any student feels the need for it, he need but read it and visual-
ize it as Chapter 0. In that case, everything that follows is as rigorous
as any mathematician would wish it (so far as objects which receive an
analytic definition are concerned). Not one word need be changed in any
proof. I hope this takes care once and for all of possible controversies
concerning so-called rigor.

Some objects receive a geometric definition, and there are applications
to physical concepts. In that case, it is of course necessary to insert one
step to bridge the physical notion and its mathematical counterpart. The
major instances of this are the functions sine and cosine, and the area,
as an integral.

For sine and cosine, we rely on the notions of plane geometry. If one
accepts standard theorems concerning plane figures, then our proofs
satisfy the above-mentioned standards. An appendix shows how one can
give purely analytic definitions and proofs for the basic properties.

For the integral, we first give a geometric argument. We then show,
using the usual Riemann sums, how this geometric argument has a perfect
counterpart when we require the rules of the game to reduce all definitions
and proofs to numbers. This should satisfy everybody. Furthermore, the
theory of the integral is so presented that only its existence depends either
on a geometric argument or a slightly involved theoretical investigation
(upper and lower sums). According to the level of ability of a class, the
teacher may therefore dose the theory according to his judgment.

It is not generally recognized that some of the major difficulties in
teaching mathematics are analogous to those in teaching a foreign lan-
guage. (The secondary schools are responsible for this. Proper training
in the secondary schools could entirely eliminate this difficulty.) Con-
sequently, I have made great efforts to carry the student verbally, so to
say, in using proper mathematical language. It secems to me essential
that students be required to write their mathematics papers in full and
coherent sentences. A large portion of their difficulties with mathematics



vi FOREWORD

stems from their slapping down mathematical symbols and formulas
isolated from a meaningful sentence and appropriate quantifiers. Papers
should also be required to be neat and legible. They should not look as if
a stoned fly had just crawled out of an inkwell. Insisting on reasonable
standards of expression will result in drastic improvements of mathematical
performance.

I believe that it is unsound to view “theory” as adversary to “‘computa-
tion”. The present book treats both as complementary to each other.
Almost always a theorem gives a tool for more efficient computations
(e.g. Taylor’s formula, for computing values of functions). Different
classes will of course put different emphasis on them, omitting some
proofs, but I have found that if no excessive pedantry is introduced, stu-
dents are willing to understand the reasons for the truth of a result, i.e.
its proof.

1 have made no great innovations in the exposition of calculus. Since
the subject was discovered some 300 years ago, it was out of the question.
Rather, I have omitted some specialized topics which no longer belong in
the curriculum. Stirling’s formula is included only for reference, and can
be skipped, or used to provide exercises. Taylor’s formula is proved with
the integral form of the remainder, which is then properly estimated. The
proof with integration by parts is more natural than the other (differ-
entiating some complicated expression pulled out of nowhere), and is the
one which generalizes to the higher dimensional case. I have placed inte-
gration after differentiation, because otherwise one has no technique
available to evaluate integrals. But on the whole, everything is fairly
standard.

I have cut down the amount of analytic geometry to what is both neces-
sary and sufficient for a general first course in this type of mathematics.
For some applications, more is required, but these applications are fairly
specialized. For instance, if one needs the special properties concerning
the focus of a parabola in a course on optics, then that is the place to pre-
sent them, not in a general course which is to serve mathematicians,
physicists, chemists, biologists, and engineers, to mention but a few. I
regard the tremendous emphasis on the analytic geometry of conics which
has been the fashion for many years as an unfortunate historical accident.
What is important is that the basic idea of representing a graph by a
figure in the plane should be thoroughly understood, together with basic
examples. The more abstruse properties of ellipses, parabolas, and hy-
perbolas should be skipped.

As for the question: Why write one more calculus book? 1 would
answer: Because practically all existing ones are too long (500 to 600
pages) and one loses sight of the over-all ideas, sacrificed for the sake of
topics which have hung on through habits, bad habits, | would say. 1
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hope that the present arrangement of the chapters will give the reader a
solid view of the subject.

To conclude, if I may be allowed another personal note here, 1 learned
how to teach the present course from Artin, the year I wrote my Doctor’s
thesis. I could not have had a better introduction to the subject.

New Haven, Connecticut SERGE LANG
October 1972

My publishers, Addison-Wesley, have produced
my books for these last ten years. I want it known
how much I appreciate their extraordinary per-
formance at all levels: general editorial advice,
specific editing of the manuscripts, and essentially
flawless typesetting and proof sheets. It is very
gratifying to have found such a company to deal
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If you are already at ease with the elementary properties of numbers
and if you know about coordinates and the graphs of the standard equa-
tions (linear equations, parabolas, ellipses), then you should start im-
mediately with Chapter III on derivatives.
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