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Abstract

The work treats dynamical systems given by ordinary differential equations in
the form %Et(t) = eB(X*(t),Y*(t)) where fast motions Y* depend on the slow mo-
tion X ¢ (coupled with it) and they are either given by another differential equation
dY;t(t) = b(X®(t),Y®(t)) or perturbations of an appropriate parametric family of
Markov processes with freezed slow variables. In the first case we assume that the
fast motions are hyperbolic for each freezed slow variable and in the second case
we deal with Markov processes such as random evolutions which are combinations
of diffusions and continuous time Markov chains. First, we study large deviations
of the slow motion X¢ from its averaged (in fast variables Y¢) approximation X¢.
The upper large deviation bound justifies the averaging approximation on the time
scale of order 1/g, called the averaging principle, in the sense of convergence in
measure (in the first case) or in probability (in the second case) but our real goal
is to obtain both the upper and the lower large deviations bounds which together
with some Markov property type arguments (in the first case) or with the real
Markov property (in the second case) enable us to study (adiabatic) behavior of
the slow motion on the much longer exponential in 1/¢ time scale, in particular, to
describe its fluctuations in a vicinity of an attractor of the averaged motion and its
rare (adiabatic) transitions between neighborhoods of such attractors. When the
fast motion Y*¢ does not depend on the slow one we arrive at a simpler averaging
setup studied in numerous papers but the above fully coupled case, which better
describes real phenomena, leads to much more complicated problems.
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Preface

This work studies the long time behavior of slow motions in two scale fully
coupled systems and it consists of two, essentially, independent parts which even
have their own introductions. The first part is written having in mind readers with
strong backgrounds in smooth dynamical systems and it deals with the case of
Axiom A flows as fast motions. The second part is written for probabilists and it
studies the case where fast motions are certain Markov processes such as random
evolutions and,-in particular, diffusions. As we noticed already in [47] principal
large deviations results for Axiom A systems and Markov processes (satisfying,
say, the Doeblin condition) follow from a similar scope of ideas and basic theorems
though they rely on quite different machineries and backgrounds. Rate functionals
of large deviations turn out to be Legendre transforms of corresponding topolog-
ical pressures in the dynamical systems case while in the diffusion case they are
obtained in the same way from principal eigenvalues of the corresponding infinitesi-
mal generators. This intrinsic connection is further amplified by the fact that in the
random diffusion perturbations of dynamical systems setup these principal eigen-
values converge to topological pressures when the perturbation parameter tends to
zero (see [46]).

Usually, Markov processes are easier to deal with since we can use the Markov
property there for free while in the dynamical systems case we have to look for some
substitute. We felt that the first part of this work would be quite difficult to follow
for most of probabilists in view of its heavy dynamical systems machinery. By this
reason the second part is written in the way that it can be read independently of
the first one and it relies only on the standard probabilistic background though
the strategies of the proof in both parts are similar with the Markov property
making arguments easier in the second part which also does not require to deal
with geometric pecularities of the hyperbolic deterministic dynamics of the first
part. In order to ensure a convenient independent reading of the second part we
give full arguments there except for very few references to some general proofs in
the first part which do not rely on the specific dynamical systems setup there. Still,
the readers having sufficient background both in dynamical systems and Markov
processes will certainly benefit from having proofs for both cases in one place and
such exposition demonstrates boldly unifying features of these two quite different
objects. We observe, that it could be possible to start with some very general
(though quite unwieldy) assumptions which would enable us to prove similar results
and then verify these assumptions for both cases we are dealing with but we believe
that such exposition would make the paper quite difficult to read for both groups
of mathematicians this work is addressed to.
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Part 1

Hyperbolic Fast Motions



1.1. Introduction

Many real systems can be viewed as a combination of slow and fast motions
which leads to complicated double scale equations. Already in the 19th century in
applications to celestial mechanics it was well understood (though without rigorous
justification) that a good approximation of the slow motion can be obtained by
averaging its parameters in fast variables. Later, averaging methods were applied
in signal processing and, rather recently, to model climate-weather interactions (see
[36], [18], [37] and [52]). The classical setup of averaging justified rigorously in [12]
presumes that the fast motion does not depend on the slow one and most of the work
on averaging treats this case only. On the other hand, in real systems both slow and
fast motions depend on each other which leads to the more difficult fully coupled
case which we study here. This setup emerges, in particular, in perturbations of
Hamiltonian systems which leads to fast motions on manifolds of constant energy
and slow motions across them.

In this work we consider a system of differential equations for X* = X7 and
Y=Y,

dXe(t) dYE(t)
dt dt

with initial conditions X¢(0) = x, Y*(0) = y on the product R? x M where M is a
compact ny-dimensional C? Riemannian manifold and B(z,y), b(x,y) are smooth
in z, y families of bounded vector fields on R? and on M, respectively, so that y
serves as a parameter for B and x for b. The solutions of (1.1.1) determine the flow
of diffeomorphisms ®¢ on R? x M acting by ®i(z,y) = (X5 (), Yy, (t). Taking
¢ = 0 we arrive at the flow ® = ®/ acting by ®'(z,y) = (z, Fly) where F! is
another family of flows given by Fly = Y, ,(t) with Y =Y, , = Yﬁy being the
solution of

(1.1.1) = eB(X(t),Y5(t)), = b(X5(t), V(1))

dyY(t)
dt
It is natural to view the flow ®! as describing an idealised physical system where
parameters = (z1,...,x4) are assumed to be constants (integrals) of motion while
the perturbed flow ®! is regarded as describing a real system where evolution of
these parameters is also taken into consideration. Essentially, the proofs of this
paper work also in the slightly more general case when B and b in (1.1.1) together
with their derivatives depend Lipschitz continuously on ¢ (cf. [55]) but in order to
simplify notations and estimates we do not consider this generalisation here.
Assume that the limit

(1.1.2) =b(z,Y(t)), Y(0)=y.

(1.1.3) B(z) = By(z) = lim T7! B(xz, Fly)dt

T—oo 0
exists and it is the same for "many” y’s. For instance, suppose that p, is an ergodic
invariant measure of the flow F! then the limit (1.1.3) exists for u,—almost all y
and is equal to

B(z) = B, (x) = / Bz, y)dua(y).

If b(z,y) does not, in fact, depend on z then F! = F' and p, = p are also
independent of x and we arrive at the classical uncoupled setup. Here the Lipschitz
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continuity of B implies already that_B (z) is also Lipshitz continuous in z, and so
there exists a unique solution X = X, of the averaged equation

dXe(t I .
(1.1.4) df( ) — B(XE(t)), X°(0)==.
In this case the standard averaging principle says (see [73]) that for u-almost all y,
(1.1.5) lim sup |XZ  (t)— Xi(t)|=0.

e=00<t<T/e

As the main motivation for the study of averaging is the setup of perturbations
described above we have to deal in real problems with the fully coupled system
(1.1.1) which only in very special situations can be reduced by some change of
variables to a much easier uncoupled case where the fast motion does not depend
on the slow one. Observe that in the general case (1.1.1) the averaged vector field
B(z) in (1.1.3) may even not be continuous in z, let alone Lipschitz, and so (1.1.4)
may have many solutions or none at all. Moreover, there may exist no natural well
dependent on z € R? family of invariant measures y, since dynamical systems F!
may have rather different properties for different z’s. Even when all measures .
are the same the averaging principle often does not hold true in the form (1.1.5), for
instance, in the presence of resonances (see [63] and [56]). Thus even basic results
on approximation of the slow motion by the averaged one in the fully coupled
case cannot be taken for granted and they should be formulated in a different way
requiring usually stronger and more specific assumptions.

If convergence in (1.1.3) is uniform in z and y then (see, for instance, [52])
any limit point Z(t) = Z,(t) as e — 0 of Z ,(t) = X£ ,(t/e) is a solution of the
averaged equation
dZ(t)

dt

It is known that the limit in (1.1.3) is uniform in y if and only if the flow F! on
M is uniquely ergodic, i.e. it possesses a unique invariant measure, which occurs
rather rarely. Thus, the uniform convergence in (1.1.3) assumption is too restrictive
and excludes many interesting cases. Probably, the first relatively general result on
fully coupled averaging is due to Anosov [1] (see also [63] and [52]). Relying on the
Liouville theorem he showed that if each flow F! preserves a probability measure p,
on M having a C'! dependent on x density with respect to the Riemannian volume
m on M and p, is ergodic for Lebesgue almost all z then for any é > 0,

(1.1.7) mes{(z,y) : sup |X; (t)— X5(t)|>d} —=0ase—0,
0<t<T/e

(1.1.6) = B(Z(t)), Z(0)=ux.

where mes is the product of m and the Lebesgue measure in a relatively compact
domain X C R?. An example in Appendix to [56] shows that, in general, this
convergence in measure cannot be strengthened to the convergence for almost all
initial conditions and, moreover, in this example the convergence (1.1.5) does not
hold true for any initial condition from a large open domain. Such examples exist
due to the presence of resonances , more specifically to the ”capture into resonance”
phenomenon, which is rather well understood in perturbations of integrable Hamil-
tonian systems. Resonances lead there to the wealth of ergodic invariant measures
and to different time and space averaging. It turns out (see [11]) that wealth of
ergodic invariant measures with nice properties (such as Gibbs measures) for Ax-
iom A and expanding dynamical systems also yields in the fully coupled averaging
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setup with the latter fast motions examples of nonconvergence as ¢ — 0 for large
sets of initial conditions (see Remark 1.2.12).

In Hamiltonian systems, which are a classical object for applications of aver-
aging methods, the whole space is fibered into manifolds of constant energy. For
some mechanical systems these manifolds have negative curvature with respect to
the natural metric and their motion is described by geodesic flows there. Hyperbolic
Hamiltonian systems were discussed, for instance, in [64] and a specific example
of a particle in a magnetic field leading to such systems was considered recently in
[74]. Of course, these lead to Hamiltonian systems which are far from integrable.
Such situations fall in our framework and they are among main motivations for
this work. This suggests to consider the equation (1.1.1) on a (locally trivial) fiber
bundle M = {(z,y) : « € U,y € M,} with a base U being an open subset in a
Riemannian manifold N and fibers M, being diffeomorphic compact Riemannian
manifolds (see [75]). On the other hand, M has a local product structure and if
||B|| is bounded then the slow motion stays in one chart during time intervals of
order A/e with A small enough. Hence, studying behavior of solutions of (1.1.1)
on each such time interval separately we come back to the product space R? x M
setup and will only have to piece results together to see the picture on a larger time
interval of length T'/e.

We assume in the first part of this work that b(z,y) is C? in z and y and that
for each = in a closure of a relatively compact domain X the flow F! is Anosov
or, more generally, Axiom A in a neighborhood of an attractor A,. Let uSR® be
the Sinai-Ruelle-Bowen (SRB) invariant measure of F on A, and set B(z) =
[ B(z,y)duSRB(y). It is known (see [16]) that the vector field B(z) is Lipschitz
continuous in z, and so the averaged equations (1.1.4) and (1.1.6) have unique
solutions X¢(t) and Z(t) = X¢(t/¢). Still, in general, the measures uS*® are singular
with respect to the Riemannian volume on M, and so the method of [1] cannot be
applied here. We proved in [55] that, nevertheless, (1.1.7) still holds true in this
case, as well, and, moreover, the measure in (1.1.7) can be estimated by e~¢/¢ with
some ¢ = ¢(d) > 0. The convergence (1.1.7) itself without an exponential estimate
can be proved by another method (see [57]) which can be applied also to some
partially hyperbolic fast motions . An extension of the averaging principle in the
sense of convergence of Young measures is discussed in Section 1.11.

Once the convergence of Z ,(t) = X: (t/e) to Z,(t) = Xi(t/e) as e — 0
is established it is interesting to study the asymptotic behavior of the normalized
error

(1.1.8) VES(t) = 9122, (1) — Za(t)), 6 € [%. 1.

Namely, in our situation it is natural to study the distributions m{y : fo (1) € A}
as € — 0 where m is the normalized Riemannian volume on M and A is a Borel
subset in the space Cor of continuous paths p(t), t € [0,7] on R%. We will obtain
in this work large deviations bounds for V7, = Vf; which will give, in particular,
the result from [55] saying that

(1.1.9) m{y: |V,

0‘T>6}—>0 as £—0

exponentially fast in 1/e where || - ||o,7 is the uniform norm on Cyr. However, the
main goal of this work is not to provide another derivation of (1.1.9) but to obtain
precise upper and lower large deviations bounds which not only estimate measure
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of sets of initial conditions for which the slow motion Z* exhibits substantially
different behavior than the averaged one Z but also enable us to go further and to
investigate much longer exponential in 1/¢ time behavior of Z¢. Namely, we will
be able to study exits of the slow motion from a neighborhood of an attractor of
the averaged one and transitions of Z° between basins of attractors of Z. Such
evolution, which becomes visible only on much longer than 1/¢ time scales, is
usually called adiabatic in the framework of averaging. In the simpler case when
the fast motion does not depend on the slow one such results were discussed in
[49]. Still, even in this uncoupled situation descriptions of transitions of the slow
motion between attractors of the averaged one were not justified rigorously both
in the Markov processes case of [29] and in the dynamical systems case of [49].
Extending these technique to three scale equations may exhibit stochastic resonance
type phenomena producing a nearly periodic motion of the slowest motion which
is described in Section 1.10 below. These problems seem to be important in the
study of climate-weather interactions and they were discussed in [18] and [37]
in the framework of a model describing transitions between steady climatic states
with weather evolving as a fast chaotic system and climate playing the role of
the slow motion. Such ”very long” time description of the slow motion is usually
impossible in the traditional averaging setup which deals with perturbations of
integrable Hamiltonian systems. In the fully coupled situation we cannot work just
with one hyperbolic flow but have to consider continuously changing fast motions
which requires a special technique. In particular, the full flow ® on R% x M defined
above and viewed as a small perturbation of the partially hyperbolic system ® plays
an important role in our considerations. It is somewhat surprising that the ”very
long time” behavior of the slow motion which requires certain ”Markov property
type” arguments still can be described in the fully coupled setup which involves
continuously changing fast hyperbolic motions. It turns out that the perturbed
system still possesses semi-invariant expanding cones and foliations and a certain
volume lemma type result on expanding leaves plays an important role in our
argument for transition from small time were perturbation techniques still works
to the long and ”very long” time estimates.

It is plausible that moderate deviations type results can be proved for Vf"ﬁ

when 1/2 < 6 < 1 and that the distribution of nyl / 2() in y converges to the
distribution of a Gaussian diffusion process in R%. Still, this requires somewhat
different methods and it will not be discussed here. In this regard we can mention
limit theorems obtained in [14] for a system of two heavy and light particles which
leads to an averaging setup for a billiard flow. For the simpler case when b does
not depend on z, i.e. when all flows F! are the same, the moderate deviations and
Gaussian approximations results were obtained previously in [50]. Related results
in this uncoupled situation concerning Hasselmann’s nonlinear (strong) diffusion
approximation of the slow motion X were obtained in [56].

We consider also the discrete time case where (1.1.1) is replaced by difference
equations for sequences X*(n) = X7  (n) and Y*(n) =Y (n), n=0,1,... so that

(1.1.10) X¢(n+1) — X¢(n) =eB(X*(n),Y*(n)),
Ye(n+1) = FXE(”)YE(TL), Xe(0) =2,Y(0) =y
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where B : X x M — R¢ is Lipschitz in both variables and the maps F, : M — M
are smooth and depend smoothly on the parameter z € R%. Introducing the map

D (x,y) = (X7 ,(1), Y7, (1) = (z +B(z,y), Fay)

we can also view this setup as a perturbation of the map ®(x,y) = (z, F,y) de-
scribing an ideal system where parameters x € R? do not change. Assuming that
F,, x € R? are C? depending on z families of either C? expanding transformations
or C? Axiom A diffeomorphisms in a neighborhood of an attractor A, we will derive
large deviations estimates for the difference X , (n) — X5(n) where X¢ = X¢ solves
the equation

dX=(t)
dt

where B(z) = [ B(z,y)duSRP(y) and pSRP is the corresponding SRB invariant
measure of F, on A,. The discrete time results are obtained, essentially, by simpli-
fications of the corresponding arguments in the continuous time case which enable
us to describe ”very long” time behavior of the slow motion also in the discrete
time case. Since our methods work not only for fast motions being Axiom A dif-
feomorphisms but also when they are expanding transformations we can construct
simple examples satisfying conditions of our theorems and exhibiting correspond-
ing effects. In particular, we produce in Section 1.9 computational examples which
demonstrate transitions of the slow motion between neighborhoods of attractors of
the averaged system.

A series of related results for the case when ordinary differential equations in
(1.1.1) are replaced by fully coupled stochastic differential equations appeared in
[45], [77]-[79], [66], and [5]. Hasselmann’s nonlinear (strong) diffusion approxima-
tion of the slow motion in the fully coupled stochastic differential equations setup
was justified in [10]. When the fast process does not depend on the slow one such
results were obtained in [44], [29], and [54]. Especially relevant for our results
here is [78] and we employ some elements of the probabilistic strategy from this
paper. Still, the methods there are quite different from ours and they are based
heavily, first, on the Markov property of processes emerging there and, secondly, on
uniformity and nondegeneracy of the fast diffusion term assumptions which cannot
be satisfied in our circumstances as our deterministic fast motions are very degen-
erate from this point of view. Note that the proof in [78] contains a vicious cycle
and substantial gaps which recently were essentially fixed in [79]. Some of the
dynamical systems technique here resembles [49] but the dependence of the fast
motion on the slow one complicates the analysis substantially and requires addi-
tional machinery. A series of results on Cramer’s type asymptotics for fully coupled
averaging with Axiom A diffeomorphisms as fast motions appeared recently in [4]-
[7]. Observe that the methods there do not work for continuous time Axiom A
dynamical systems considered here, they cannot lead, in principle, to the standard
large deviations estimates of our work and they deal with deviations of X* from
the averaged motion only at the last moment and not of its whole path. Various
limit theorems for the difference equations setup (1.1.10) with partially hyperbolic
fast motions were obtained recently in [20] and [21].

The study of deviations from the averaged motion in the fully coupled case
seems to be quite important for applications, especially, from phenomenological
point of view. In addition to perturbations of Hamiltonian systems mentioned above

(1.1.11) =eB(X4(t)), X5(0) ==z
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there are many non Hamiltonian systems which are naturally to consider from the
beginning as a combination of fast and slow motions. For instance, Hasselmann [36]
based his model of weather—climate interaction on the assumption that weather is
a fast chaotic motion depending on climate as a slow motion which differs from
the corresponding averaged motion mainly by a diffusion term. Though, as shown
in [54], [10] and [56], this diffusion error term does not help in the study of large
deviations which are responsible for rare transitions of the slow motion between
attractors of the averaged one, the latter phenomenon can be described in our
framework and it seems to be important in certain models of climate fluctuations
(see [18] and [37]). Very slow nearly periodic motions appearing in the stochastic
resonance framework considered in Section 1.10 may also fit into this subject in the
discussion on "ice ages”. Of course, it is hard to believe that real world chaotic
systems can be described precisely by an Anosov or Axiom A flow but one may
take comfort in the Chaotic Hypothesis [32]: ” A chaotic mechanical system can
be regarded for practical purposes as a topologically mixing Anosov system”.

1.2. Main results

Let F' be a C? flow on a compact Riemannian manifold M given by a differ-
ential equation

dFty
dt
A compact F'—invariant set A C M is called hyperbolic if there exists x > 0 and
the splitting TAM = I'* T° ¢ T'* into the continuous subbundles ', % T* of the
tangent bundle TM restricted to A, the splitting is invariant with respect to the

differential DF* of F*, T'? is the one dimensional subbundle generated by the vector
field b, and there is ¢y > 0 such that for all £ € I'*, n € I'%, and t > t,,

(1.2.2) IDF'|| < e™™ i€l and [[DF~"n]| < e™~|In].

(1.2.1) = b(F'y), FOy =y.

A hyperbolic set A is said to be basic hyperbolic if the periodic orbits of F|5 are
dense in A, Ft|5 is topologically transitive, and there exists an open set U D A
with A = N_o<t<oc FtU. Such a A is called a basic hyperbolic attractor if for some
open set U and t; > 0,

Ft')U c U and ﬂt>() FtU =A
where U denotes the closure of U. If A = M then F! is called an Anosov flow.

1.2.1. ASSUMPTION. The family b(x,-) in (1.1.2) consists of C? vector fields on
a compact nyi-dimensional Riemannian manifold M with uniform C? dependence
on the parameter x belonging to a neighborhood of the closure X of a relatively
compact open connected set X C RY. Each flow F!, z € X on M given by

dFyy
dt
possesses a basic hyperbolic attractor A, with a splitting Ty, M = TS @ T ¢ I'*

satisfying (1.2.2) with the same k > 0 and there exists an open set W C M and
to > 0 such that

(1.2.3) =b(z, Fly), Fly=y

(1.2.4) A; CW, FIW C WVt > to, and Neso FIW = A, Vo € X.
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Let J¥(t,y) be the absolute value of the Jacobian of the linear map DF!(y) :
¥ (y) — I'%(Fly) with respect to the Riemannian inner products and set
dJ¥(t,
(1.25) puly) = =LY
The function ¢%(y) is known to be Holder continuous in y, since the subbundles I'%
are Holder continuous (see [13] and [60]), and ¢%(y) is C! in z (see [16]).

Let W satisfy (1.2.4) and set WL = {y € W : Fly € W Vs € [0,t]}. A
set E C W! is called (8,t)—separated for the flow F, if y,2 € E, y # z imply
d(F2y,Fz) > § for some s € [0,t], where d(-,-) is the distance function on M. For
each continuous function ¥ on W set P, (y,4,t) = sup{>_ pexp fot Y(Fiy)ds :
E C W! is (8,t) — separated for F.}, Py(¥,d,t) = 0 if WL =0, and

P, (v, 0) = limsup % log P..(1,6,1).
t—oo
The latter is monotone in §, and so the limit
Pz(l/}) = %II% Pz(i/% 6)

exists and it is called the topological pressure of ¢ for the flow F!. Let M, denotes
the space of F!—invariant probability measures on A, then (see, for instance, [60])
the following variational principle

(1.2.6) Py(¢) = sup ([ du+ hu(F}))
HEM,

holds true where h,(F}) is the Kolmogorov-Sinai entropy of the time-one map F}
with respect to u. If ¢ is a Holder continuous function on A, then there exists a
unique F!—invariant measure pd on A,, called the equilibrium state for p* + g,
such that

(1.2.7) Po(p% +4q) = /(wz +q)dud + g (Fy).

We denote pl by pSRE since it is usually called the Sinai-Ruelle- Bowen (SRB)

measure . Since A, are attractors we have that P;(p}) = 0 (see [13]).
For any probability measure v on W define

_f —[etdv—h(F)) ifveM,
(1.2.8) I(v) = { 56 otherwise.

Then
Py(s® + g) = sup( / qdv — L(v)).

Observe that by the Ruelle inequality (see, for instance, [60], Theorem S.2.13),
I.(v) > 0, and so in view of Assumption 1.2.1 for any v € M,

(1.2.9) I;(v) < sup |pz(y)| < sup  |pz(y)| < oo

YyEA, TEX yEA,

It is known that h,(F}) is upper semicontinuous in v since hyperbolic flows are
entropy expansive ( see [8]). Thus I.(v) is a lower semicontinuous functional in v
and it is also convex (and affine on M,) since entropy h, is affine in v (see, for
instance, [80]). Hence, by the duality theorem (see [2], p.201),

I;(v) = sup ([ qdv— P:(¢} +q)).
qeC(M)
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Observe that this formula can be proved more directly. Namely, if we define I, (v)
by it in place of (1.2.8) then (1.2.8) follows for v € M, from Theorem 9.12 in [80]
and it is easy to show directly that I,(v) defined in this way equals oo for any finite
signed measure v which is not F-invariant.

Since we assume that the vector field B is C! in both arguments (here only
continuity in y is needed) then for any z,2’ € X and a,3 € R? we can define
H(z,z',3) = P.(< 3,B(2',-) > +¢%) and H(z,) = H(z,z,[). Then

(1.2.10) H(z,z',B) =sup, ([ < B,B(z',y) > dv(y) — I.(v))
= SUp,epe (< @, 8> —L(z,2',a))

where
(1.2.11) L(z,2',a) = inf{I,(v) : /B(a:',y)du(y) = a}

if v € M, satisfying the condition in brackets exists and L(z, z’, &) = oo, otherwise.
Since, H(z,z',3) is convex and continuous the duality theorem (see [2], p.201)
yields that

(1.2.12) L(z,z',a) = sup (< a,f > —H(z,2',3))
BER4

provided there exists a probability measure v € M, such that [ B(z',y)dv(y) = o
and L(z,z’,a) = oo, otherwise. Clearly, L(z,z’,a) is convex and lower semi-
continuous in all arguments and, in particular, it is measurable. We set also
L(z,a) = L(z,z, a).

Denote by Cyr the space of continuous curves v, = y(t), t € [0,T] in X which
is the space of continuous maps of [0,T] into X. For each absolutely continuous
~ € Cyr its velocity 4; can be obtained as the almost everywhere limit of continuous

functions n(y;41n-1 —¥¢) when n — oo. Hence 4; is measurable in ¢, and so we can
set

T T
(1.2.13)  Sor(y) = / L(y,4:)dt = / inf{L,,(v) : 4+ = B,(m), v € M., }dt,
0 0

where B, (z) = [ B(z,y)dv(y), provided for Lebesgue almost all ¢ € [0,T] there
exists vy € M., for which 4 = By, (), and Sor(7y) = oo otherwise. It follows from

[13] and [16] that
T
Sor(v) = Sor(v"*) = —/ Py (phn)dt =0
0
where ~¢* is the unique solution of the equation
(1.2.14) =B W==
where B(z) = Bsrs(2), and the equality Sor(7y) = 0 holds true if and only if
¥ ="
Define the uniform metric on Cyr by

ror(y,m) = sup |ye — ml
0<t<T

for any ,n € Cor. Set

or(z) = {v € Cor : v =z, Sor(y) < a}.
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Since L(z, «) is lower semicontinuous and convex in a and, in addition, L(z, a) = oo
if || > sup,em |B(w, y)| we conclude that the conditions of Theorem 3 in Ch.9 of
[41] are satisfied as we can choose a fast growing minorant of L(z, a) required there
to be zero in a sufficiently large ball and to be equal, say, |a|? outside of it. As a
result, it follows that Spr is lower semicontinuous functional on Cor with respect
to the metric ror, and so ¥ (z) is a closed set which plays a crucial role in the
large deviations arguments below.
We suppose that the coefficients of (1.1.1) satisfy the following

1.2.2. ASSUMPTION. There exists K > 0 such that

(1.2.15) |B(z,y)llcr(xxmy + 16z, ¥)llc2(xxmy < K
where || - |lci(xxm) is the C* norm of the corresponding vector fields on X x M.

Set Xy = {z € X: X: (s) € X and X5(s) € X forally e W, s € [0,t/e], ¢ >
0}. Clearly, X; D {z € X : inf,cpx |z — 2| > 2Kt}. The following is one of the main
results of this paper.

1.2.3. THEOREM. Suppose that * € Xr and X;, Y; are solutzons of
(1.1.1) with coefficients satisfying Assumptions 1.2.1 and 1.2.2. Set Z7 ,(t) =
X;y(t/e) then for any a,6,A > 0 and every v € Cor,v = T there exists

g0 = €o(x,7,a,8,\) > 0 such that for € < g,

(1.2.16) m{yew: ror(Z5,,7) <8} > exp {—é(SOT(v) + /\)}
and

1
(1.2.17) m{y € W: ror(Z 0 Yor(z)) >0} <exp {——E(a - /\)}

where, recall, m is the normalized Riemannian volume on M. The functional Sor(7y)
for v € Cor is finite if and only if ¥, = By, (V) for v, € M., and Lebesgue almost
all t € [0,T). Furthermore, Sor(Y) achieves its minimum 0 only on v* satisfying
(1.2.14) for all t € [0,T). Finally, for any 6 > 0 there ezist c¢(6) > 0 and g9 > 0
such that for all € < €y,

(1.218) m{y €W nun(25,,2) > 8 < exp (<22

where Z, = y* is the unique solution of (1.2.14).

Observe that (1.2.18) (which was proved already in [55] by a less precise large
deviations argument) follows from (1.2.17) and the lower semicontinuity of the
functional Sor and it says, in particular, that Z;  converges to Z, in measure on
the space (W, m) with respect to the metric ror. It is naturally to ask whether
we have here also the convergence for m-almost all y € W. An example due to
A Neishtadt discussed in [56] shows that in the classical situation of perturbations
of integrable Hamiltonian systems, in general, the averaging principle holds true
only in the sense of convergence in measure on the space of intitial conditions but
not in the sense of the almost everywhere convergence. This example concerns the
simple system I = €(4+ 8singp — I), ¢ = I with the one dimensional slow motion
I and the fast motion ¢ evolving on the circle while the corresponding averaged
motion J = I satisfies the equation J = £(4 — J). The resonance occurs here only
when I = 0 but it suffices already to create troubles in the averaging principle.



