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Invited Paper

Vibration imagery of remote objects

Reinhard Ebert, Peter Lutzmann
Forschungsinstitut fuer Optronik und Mustererkennung (FGAN-FOM)
76275 Ettlingen, Gutleuthausstrasse 1, Germany
phone: +49 7243 992140, e-mail: ebert@fom.fgan.de

ABSTRACT

Laser vibrometry based on coherent detection technique allows to measure vibration characteristics of objects, based on its
high Doppler resolution. Point targets were measured up to 40 km under medium turbluence conditions. Specifically
vibration imaging offers an extensive potential for short-range civil applications [1] and for long-range target classification
and identification [2]. For short range applications (up to few meters distance) laser vibrometry is used for investigating and
testing of all kind of mechanical structures with respect to their vibration characteristics. Laser-Doppler based acoustic-to-
seismic detection of buried mines shows a potential of this attractive technique at short range, mostly based on A = 632 nm
(HeNe laser). At longer ranges, the wavelengths of A = 10.6 pm (CO2 laser) and A = 1.5 pm (erbium fiber laser) are of
interest, because of laser safety and better beam propagation through the atmosphere. Examples of the vibrometry technique
with and without spatial resolution capability are shown here.

Keywords: vibrometry , vibration imagery, coherent laser radar

1. INTRODUCTION

For many years methods to classify and identify targets in the battlefield have been developed. There are passive methods,
e.g. evaluation of the thermal image of a target, and active methods, e.g. analysis of the target radar echo. To prevent
detection by a foe, passive or quasi passive procedures are preferred. Acoustic or seismographic methods are extremely
sensitive to the propagation medium or additional battlefield effects and are therefore not very practical. Heterodyne laser
radar is a method for measuring the vibration signature of the target offering the following advantages:

comparatively covert (owing to small divergence and the short dwell time)

high resolution (small wavelength)

difficult to jam

compatible with the current optical target detection sensors used on the battlefield

One possible benefit of shorter wavelength for vibration sensing comes from the modulation index which plays an important
role in frequency modulation theory. Figure 1 shows the modulation index as a function of the wavelength, for a vibration
amplitude of 5 pm.

The most common laser radar system — for long range applications - works on 10.6 pm wavelength, but because of rapid
progress in compact solid state lasers (heterodyne-capable) in recent years, there has been increasing interest in laser-radar-
systems at 1.5 or 2 um. These offer the possibility of building smaller systems with lower cost components and are therefore
more useful for tactical applications. Benefits of mid-infared over the far-infared wavelength are:

e higher Doppler resolution (due to the small wavelength)
e higher detector sensivity (incoherent mode)
e no or less need of detector cooling
e higher laser cross section of targets
e use of conventional optical materials
Free-Space Laser Communication and Laser Imaging Il, Jennifer C. Ricklin, David G. Voelz, 1
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In particular drawbacks with coherent detection (vibration sensing) are:

e stronger impact of the atmospheric turbulence
e higher quantum limited noise

For short range applications like testing automibile components and the Doppler based acoustic-to-seismic detection of
buried mines, the HeNe laser wavelength A = 632 nm is used very effectively.

Vibration Amplitude: 5 pm

modulation index B

o, g RRE S Al - -

0.01

LN L s o s ey YT

30 mm 3 ;lm 300 ym 30 ym 3pm 0.5 Hm

r T 1 frequency
10 GHz 100 GHz 1THz 10 THz 100 THz 1000 THz

wavelength

Fig. 1: Modulation index as a function of the wavelength.

2. LONG RANGE APPLICATION

2.1 Comparison of range performances of 10.6 pm and 1.5 pum laser radar systems

" In order to discuss the range capability for the two wavelengths of A=1.5 pm and A=10.6 um respectively, two generic laser
radar systems are compared.

The carrier to noise (CNR) is given for a shot-noise limited coherent laser radar system (monostatic) for extended
Lambertian target by /3/:

P -py-D*-A-t,,

2 aR
n ) n:n ) n | 2 € - “
CNR = ” 4-R’ : ()
> 3 2T 5 o5 . @7 5
h-c:B-(I1+®,” - (=-291-(=—)*-C} -R)™*” + (—=)?)
¢ 8 A AR

with

P.:  source laser power N.: antenna efficiency

pr: target reflectivity n:  quantum efficiency of the photo detector

D: transmitter / receiver diameter oy: 1/€*-beam radius at the transmitter

Lp:  system optical efficiency Npoi:  accounts for depolarisation due to the target

2 Proc. of SPIE Vol. 4821



A laser wavelength a:  atmospheric extinction coefficient
h: Planck’s constant ¢ speed of light

R: range B: electrical bandwidth

o 1/e*-beam radius at the transmitter

C“3: structure constant of refractive

index fluctuations

The plots of Fig.2 are intended to show the different contributions (due to typical target reflectivities and atmospheric
impacts) to the overall CNR, using equation 1. The system parameters applied to the calculation are also given in Fig.2.

The range performance is of the same order for both considered wavelengths. The loss due to the stronger impact of
atmospheric turbulence with the 1.5 pm laser radar system is essentially compensated by the higher atmospheric extinction
coefficient and the smaller target reflectivity with 10.6 pm.

1.5 pm laser radar system 10.6 pm laser radar system
50 T T - T 50 l A T
—-— ideal Lambertian reflector . —-— ideal Ldmbertian reflector
ssseneee + target reflectivity sssasane + target reflectivity
——— + atmospheric cxu'-nction . — ==+ atmospheric extinction
40 = : o = 40 . 3 - extinction
™. + atmospheric extinction < atmospheric extinctio
e and turbulence . and turbulence

2 2
=] 5
= (=1
B &
range in km in km

Fig. 2: Available carrier to noise ratio (solid line) assuming two generic systems with wavelengths of A=1.5 pm and
A=10.6 um.

The following parameters were assumed: transmitter and receiver diameter: 5 cm, quantum efficiency n:
0.8, antenna efficiency n,: 0.7, efficiency (depolarisation effect) Mo 1, 1/e* beam radius ox: 18 mm
(1.5 pm) and 47 mm (10.6 pm), effective bandwidth B: 100 kHz, output power of the laser P.: IW,
pr : 0.30 (1.54 um) and py 0.03 (10.6 um), combined transmission loss of the receiver and transmitter typ:
0.5, collimated beam (f =<0) , atmospheric extinction coefficient a: 0.14 km™ (A=10.6 um) and 0.037 km"'

(A=1.5 pm).

With common laser radar systems used over longer ranges, the laser beam is spread across most, if not all, parts of the
target. This results in spatially unresolved target vibration signatures. Frequency distributions in the power spectra of such
spatially unresolved vibration signatures are dependent on the area covered by the laser beam on target and on target aspect
angle. Our aim was to investigate to what extent the target information content of the return signals would be increased by
spatially resolving the vibration signature. Resolution may be achieved by using a scan device or a multi-element receiver.
With such a 2-dimensional laser vibration sensing approach (vibration imagery) the target will be spatially resolved and one
obtains a “data cube” consisting of a 2D map of vibration amplitudes across the target, one for each vibration frequency.

Proc. of SPIE Vol. 4821 3



In summary, the main purpose of vibration imagery is to

understand the principles governing vibration signature formation
model spatially unresolved vibration signatures

study the enhancement of classification potential of vibration
signatures

study the added capability of classifying concealed targets

analyse the vibration behavior of large scale-structure

(e. g. bridges and towers)

2.2 Experimental setup

The 10.6 pm-—coherent laser radar (BASIS 2 of FGAN-FOM) used for the longest-range experiments has a bistatic
configuration (Fig. 3). The laser source used is a CO2-waveguide laser with an output power of 8 W. The receiver aperture
has a single meniscus lens, where the local oscillator (LO) beam was injected into the system. The LO was taken from the
rear end of the laser in order to avoid the pickup of scattered, frequency-shifted radiation. Two acoustic-optic modulators
(AOMs) with different modulator frequencies were used - one mounted in the transmitter path, the other one in the LO path
- to limit spurious disturbances from stray reflections. The LO is reflected from a small mirror (fixed by three small rods in
front of the entrance lens) and mixed with the receiver beam in the detector plane. The stabilisation of the laser amplitude
was done by using a Stark cell. The intermediate frequency was set to 100 MHz. A cadmium mercury telluride (CMT)
quadrant detector was used in order to analyse speckle effects. Each detector element “sees” only one quarter of the LO

beam or the received laser power. The optical head was mounted on a motorized tripod, which could be rotated and tilted by
PC-controlled stepper motors.

Some examples of laser vibrometry techniques with and without spatial resolution capability will be shown.

transmitter beam

¢ g:’ EEEE— Performance data

- CO,, laser radar (vibration sensor) -

receiver beam

signal T i
Processing =ew= 4+—— Output power 3W
| Aperture diameter: 50 mm
quadrant Receiver:
= detector Ap di 100 mm O
AOM Field of View 0.4 mrad

HgCdTe quadrant detector 225 x 225 pm=
(element size: 100 x lOOlumz. space: 25 um

Intermediate frequency 100 MHz
- - one AOM (60 MHz) in the transmitter beam
CO;- waveguide laser electronic one AOM (40 MHz) in the LO beam

loop control Stark-cell

mgelr o

Fig. 3: Schematic drawing of the optical part of the 10.6 pm-laserradar system and performance data of BASIS 2.

2.3 Point target vibration measurements

Figure 4 shows some examples of the power spectra after fm-demodulation of the received if-signal detected from a
modulated retro-reflector (diameter: 5, modulation frequency range: 75 to 87 Hz) at different ranges by the 10.6 um laser
radar system described above. The data sets here shown are analysed on-line by an FFT-analyser. The occurrence of the
other frequency components apart from the frequency of the modulated corner cube may be due to contributions of

4  Proc. of SPIE Vol. 4821



vibrations induced by the retro-reflector shielding. Such effects had been identified in prior experiments with comparable
data.

A=10.6 pm
Retroreflector: 20 km

A =10.6 pm
Retrorefiector: 11 km

752Hz

cl=10"m*

cl=10"m™

PWR SP (dbVr)
PWR SP (dbVr)
28 3 3asad b

8
g
2
°
8
8
g

20
A=10.6 pm
A=10.6 pm 5.8 1 Retroreflector: 38 km
Retroreflector: 28 km

25 Cleigtm™

cl=10"m™

PWR SP (dbVr)

%
PWR SP (dbVr)

45
T T T T T T T T T T T T 1

o 50 100 150 200 250 300 0 50 100 150 200 250
frequency in Hz frequency in Hz

Fig. 4: Examples of the power spectra of the vibrating corner cubes rcorded by the 10.6 um-system at different
ranges (11, 20, 28 and 38 km).

2.4 Discrimination between target and decoy

The laser radar offers possibilities to extend the mission of thermal imagers with respect to certain reconnaissance tasks.
The combination of a thermal imager with a simplified laser radar is a cost effective way to add range, velocity, and
vibration information to the thermal image, in comparison to using a stand alone imaging laser radar system. Offering on-
line the acoustic information of the frequency demodulated vibration information signatures to an observer via a headphone
makes the thermal imager a much more powerful reconnaissance instrument, especially for decoy discrimination tasks.

The laser radar is also useful for distant targets that cannot be sufficiently spatially resolved for identification by a passive
infrared system. The vibration and velocity signatures of different *hot spots** can help the observer to assess the threat and
to discriminate real targets from decoys. An example of this application is given in Fig. 5. A thermal image was taken of a
truck with idling engine, standing beside a heated metal box, both at a distance of 3.2 km. The beam of the CO2 coherent
laser radar was pointed to the targets (white squares), which a thermal imager sees only as “hot spots*. The vibration
frequency spectra of the two hot spots are, however, quite different.
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Thermal image of heated metal box (left white square) and an idling truck (right white square) at a distance
of 3.2 km, and visual close up pictures. The corresponding frequency spectra, measured with a CO2 laser
radar, are shown above.

2.5 2D-vibration signatures

Since any surface vibration of the target produces a micro Doppler shift of the reflected laser beam, it is possible to place a
vibrating target behind a partly obscuring screen (vegetation, smoke, camouflage net etc.) and still detect the target and
(partly) reconstruct the geometrical shape of the target. Analogously to the well-known MTI (moving target indication)
mode, this technique may thus be called VTT (vibration target indication).

Camouflage nets often have many large or small holes, which are known to enforce thermal convection and thus to assist
the thermal camouflage behaviour. Laser beams can partly penetrate such nets and reach the target surface, but the fractionak
area of the openings is not very high. So the laser return contains a rather weak frequency modulated target return, plus a
large but nearly unmodulated return from the net itself.

In a first step, we used standard frequency demodulation algorithms which turned out to be quite ineffective in dealing with
a dominating backscatter at the IF frequency and the small Doppler-shifted signal (co-channel interference with small-
amplitude target vibrations). However, more sophisticated algorithms can yield better detection of the contributing
modulation from the vibrating target.

Figure 6, top and bottom, shows samples of raw data of a small civil truck, bare and camouflaged, respectively. Data were
recorded using the CO2 laser radar at a resolution of 70 x 40 pixels.

A further 2D-vibration image (Fig. 7) shows a truck with a main vibration frequency of 32.5 Hz (idling) under strong
turbulence condition (C:n = 107" m™"?), recorded by the 10.6 um laser vibration sensor. The number of pixels was
145x67 at a range of 300 m.
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Fig. 6: Target (UNIMOG) with and without camouflage net along with the visual image.

vibration amplitude

Fig. 7: 2D-vibration image of a truck with a main vibration frequency of 32.5 Hz, recorded by the 10.6 um laser
vibration sensor under strong turbulence condition (C::l =10 m™"?): Engine idling, 145x67 pixels,
range: 300m).

3. SHORT RANGE APPLICATION

3.1 Investigations and tests of automobile components

For short range applications (up to few meters distance) laser vibrometry is used for investigating and testing of all kind of
mechanical structures with respect to their vibration characteristics. Selected automotive applications are:

measurements of panel vibrations

vibration testing of braking systems

vibration testing on rotating systems

scanning vibrometry for engine measurements
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