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Preface

Quandles and their kin (kei, racks, biquandles and biracks) are al-
gebraic structures whose axioms encode the movements of knots in
space in the same way that groups encode symmetry and orthogonal
transformations encode rigid motion. Quandle theory thus brings to-
gether aspects of topology, abstract algebra and combinatorics in a
way that is easily accessible using pictures and diagrams.

The term “quandle” was coined by David Joyce in his PhD disser-
tation, written in 1980 and published in 1982 [Joy82]. Previous work
had been done as far back as 1942 by Mituhisa Takasaki [Tak42], who
used the term “kei” for what Joyce would later call “involutory quan-
dles”. In the 1950s Conway and Wraith [CW] informally discussed
a similar structure they called “wracks” from the phrase “wrack and
ruin”. At the same time Joyce was writing about quandles, Sergey
V. Matveev [Mat82] was writing behind the iron curtain about the
same algebraic structure, using the more descriptive term “distributive
groupoids”. Louis Kauffman [Kau91] used the term “crystals” for a
form of the quandle structure. In the mid 1980s a generalized form of
the quandle idea was independently discovered by Brieskorn [Bri88],
who chose the descriptive term “automorphic sets”.

In 1992 Roger Fenn and Colin Rourke [FR92] wrote a seminal
work reintroducing the quandle idea and a generalization; they chose
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to use the Conway/Wraith term “wracks” while dropping the “w
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viii Preface

to obtain the term ‘“racks”, canceling the “w” along with the writhe
independence. In subsequent work [FRS95| they suggested a fur-
ther generalization known as “biracks” with a special case known as
“biquandles”. Biquandles were explored in detail in 2002 by Louis
Kauffman and David Radford [KRO03], with later work by others
[CES04,FRS95 NVO06|.

Fenn, Rourke and Sanderson introduced in [FRS95] a cohomol-
ogy theory for racks and quandles, analogous to group homology. This
ultimately led to the current popularity of quandles, since it allowed
Scott Carter, Daniel Jelsovsky, Seiichi Kamada, Laurel Langford and
Masahico Saito in [CJKT03] to define an enhancement of the quan-
dle counting invariant using quandle cocycles, leading to new results
about knotted surfaces and more. It was this and subsequent work
that led the present authors to study quandles, and ultimately led to
this book.

If one restricts oneself to the most important quandle axiom,
namely self-distributivity, then one can trace this back to 1880 in the
work of Pierce [Pei80] where one can read the following comments:
“These are other cases of the distributive principle .... These formulae,
which have hitherto escaped notice, are not without interest.” Another
early work fully devoted to self-distributivity appeared in 1929 by
Burstin and Mayer [BM29] dealing with distributive quasigroups:
binary algebraic structures in which both right multiplication and
left multiplication are bijections, and with the extra property that
the operation is left and right distributive on itself (called also Latin
quandles).

As quandle theorists, we have found quandle theory not only
intrinsically interesting but also very approachable for undergraduates
due to its unique mix of geometric pictures and abstract algebra.
This book is intended to serve as a text for a one-semester course on
quandle theory which might be an upper division math elective or as
preparation for a senior thesis in knot theory.

This book assumes that the reader is comfortable with linear alge-
bra and basic set theory but does not assume any previous knowledge
of abstract algebra, knot theory or topology. The reader should be



Preface ix

familiar with sets, unions, intersections, Cartesian products, func-
tions between sets, injective/surjective/bijective maps as well as vec-
tor spaces over fields, linear transformations between vector spaces,
and matrix algebra in general. Readers should also be familiar with
the integers Z, rationals @Q, reals R and complex numbers C.

The book is organized as follows.

Chapter 1 introduces the basics of knot theory; advanced readers
may opt to skip directly to Chapter 2. Chapter 2 introduces impor-
tant ideas from abstract algebra which are needed for the rest of the
book, including introductions to groups, modules, and cohomology
assuming only a linear algebra background. Chapter 3 gives a sys-
tematic development of the algebraic structures (quandles and kei)
arising from oriented and unoriented knots and links, including both
theory and practical computations. Chapter 4 looks at important
connections between quandles and groups and introduces the basics
of algebraic topology, including the fundamental group and the geo-
metric meaning of the fundamental quandle of a knot. In Chapter 5
we look at generalizations of the quandle idea, including racks, bikei,
biquandles and biracks. Chapter 6 introduces enhancements of repre-
sentational knot and link invariants defined from quandles and their
generalizations. In Chapter 7 we conclude with applications to gen-
eralizations of knots including tangles, knotted surfaces in R, and
virtual knots.

The authors wish to thank our many students, colleagues and
friends without whom this book would not have been possible.
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Chapter 1

Knots and Links

1. Knots and Links

A knot is a simple closed curve, where “simple” means the curve
does not intersect itself and “closed” means there are no loose ends.
We usually think of knots in three-dimensional space since simple
closed curves in the line and plane are pretty boring and, perhaps
surprisingly, simple closed curves in 4 or more dimensions are also
boring, as we will see.

Two knots Ky and K, have the same knot type if we can move K
around in space in a continuous way, i.e. without cutting or tearing
the knot (or the space in which the knot lives!) to match up Ky with
K. Formally, Ky is ambient isotopic to K; if there is a continuous
map H : R? x [0,1] — R3 such that H(Ky,0) = Ko, H(Kg,1) = K;
and H(z,t) is injective (one-to-one) for every t € [0,1]. Such a map is
called an ambient isotopy; if you think of ¢ as a time variable, then H
is a movie showing how to continuously deform K onto K. If there
exists an ambient isotopy H taking K to K; we write H : Ky = K.

To specify a knot K we could make a physical model by tying
the knot in a rope or cord; a nice trick suggested by Colin Adams in
[Ada04] is to use an extension cord, so you can join the ends together
by plugging the plug into the outlet end.

l—‘I



2 Knots and Links

To specify knots in a more print-friendly format, we could give
a parametric function f(t) = (z(t),y(t),2(t)) where 0 <t < 1 and
f(0) = f(1). This approach is required in order to study geometric
knot theory, where the exact positioning of K in space is important.
In topological knot theory, however, we only care about the position
up to ambient isotopy; thus, a simpler solution is to draw pictures or
knot diagrams. Formally, a knot diagram is a projection or shadow
of a knot on a plane where we indicate which strand passes over
and which passes under at apparent crossing points by drawing the
understrand broken.

A knot is tame if it has a diagram with a finite number of crossing
points; knots in which every projection has infinitely many crossing
points are called wild knots. We will only deal with tame knots in
this book.

Links, Tangles and Braids (oh my!) There are many kinds of
objects related to knots. A link consists of several knots possibly
linked together; each individual simple closed curve is a component
of the link. A knot is a link with only one component.

D & ¢

A tangle is a portion of a knot or link with fixed endpoints we can
think of as inputs and outputs. If there are n inputs and m outputs,
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we have an (n,m)-tangle.

AP

A braid is a tangle which has no maxima and no minima in the
vertical direction, i.e., a tangle whose strands do not turn around.
Note that in any braid, the number of inputs must equal the number
of outputs, unlike more general tangles.

\J 17 y,
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For any braid 8 there is a knot or link ﬁ called the closure of
the braid, obtained by joining the top strands to the bottom strands.
The converse is also true — every knot or link can be put into braid
form, a fact known as Alexander’s Theorem.

™
I

DA VS

The obverse of a knot K is the mirror image of K, denoted K.
A knot may or may not be equivalent to its obverse — the trefoil knot
comes in distinct left- and right-handed varieties, for instance. Knots
which are different from their obverses are called chiral, while knots
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which are ambient isotopic to their obverses are called amphichiral.

g’

Oriented Knots. For each strand in a knot, link, tangle or braid,
we can make a choice of orientation or preferred direction of travel.
Knots described by a parametrization have an implied orientation
in the direction of increasing ¢ value; braids also have an implied
orientation of all strands oriented in the same direction (up or down
depending on the author’s choice of convention). For generic oriented
knots, links and tangles, we specify the orientation of each strand
with an arrow.

Reversing the orientation of an oriented knot K yields a possibly
different oriented knot called the inverse or reverse of K, denoted
— K. For two oriented knots Ky and K7 to be equivalent, we need an
ambient isotopy H : Ky — K; which respects the orientation of K.
For example, the trefoil knot K below is equivalent to its inverse — K
as illustrated:
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Framed Knots. Like a choice of orientation, a framing of a knot is
a choice of extra structure we can give to a knot which then must be
preserved by an ambient isotopy for two framed knots to be equiva-
lent. Start by inflating the knot K like an inner tube, so we have a
knotted solid torus N with K as its core. This solid torus is called
a regular neighborhood of the knot. A circle on the torus which goes
around the torus with the knot is called a longitude, while a circle
going around a disk slice of the solid torus with the knot at its center
is called a meridian.

longitude

meridian

A framing curve F is a simple closed curve on the surface of the torus
which projects down onto the original knot K in an injective (one-
to-one) way, i.e., a longitude of the torus. While F' goes around the
torus with K exactly once in the longitudinal direction, it can wrap
around the meridianal direction of the torus any integer number of
times.




6 Knots and Links

Let K be a knot and F' a framing curve. A framed isotopy of
(Ko, Fy) to (K;.Fy) is an ambient isotopy which carries Ky to K,
and carries F to F}. For a given knot K, with framing curve F, the
number of times F' wraps meridianally around K (with counterclock-
wise wraps counted with a positive sign and clockwise twists counted
with a minus sign) is called the framing number of the framed knot
(K, F). For a fixed knot K, two framed knots (K, Fy) and (K, F})
are framed isotopic only if the framing numbers are equal.

We can think of a framed knot as a 2-component link with the
knot and its framing curve forming two sides of a ribbon.

Then, framed isotopy can be understood as movement of the ribbon
through space. Similarly a framed link of n components can be un-
derstood as an ordinary link of 2n components where the components
come in parallel pairs forming the two sides of n ribbons, with each of
the original n components having its own framing curve and framing
number. Similarly, in a framed braid or framed tangle, each strand
has its own framing curve and framing number.

We can think of framed isotopy as a mathematical model for
knotted 3-dimensional ropes or tori, where ambient isotopy is the
model for knotted 1-dimensional curves.



