The
Plastic
Methods
of
Structural
Analysis

B.G. NEAL

Science Paperbacks %



The
Plastic
Methods
of
Structural
Analysis

B. G. NEAL

Professor of Engineering Structures and
Head of Department of Civil Engineering,
Imperial College of Science and Technology

THIRD (S.1.) EDITION

)

LONDON
CHAPMAN AND HALL

A Halsted Press Book
John Wiley & Sons, New York



First published 1956

Reprinted once

Second edition 1963

Reprinted twice

First issued as a Science Paperback 1965
Third (S.1.) edition 1977

Chapman and Hall Ltd
11 New Fetter Lane, London EC4P 4EE

ISBN 0 412 15400 5 (cased edition)
ISBN 0 412 21450 4 (Science Paperback edition)

Typeset at the Alden Press Oxford London and Northampton
and printed in Great Britain by
Richard Clay (The Chaucer Press) Ltd., Bungay, Suffolk

© 1977 B. G. Neal

This title is available in both hardbound and paperback
editions. The paperback edition is sold subject to the
condition that it shall not, by way of trade or otherwise, be
lent, re-sold, hired out, or otherwise circulated without the
publisher’s prior consent in any form of binding or cover other
than that in which it is published and without a similar
condition including this condition being imposed on the
subsequent purchaser

All rights reserved. No part of this book may be reprinted, or
reproduced or utilized in any form or by any electronic,
mechanical or other means, now known or hereafter invented,
including photocopying and recording, or in any information
storage or retrieval system, without permission in writing from
the publisher

Distributed in the U.S.A. by Halsted Press, a Division of
John Wiley & Sons, Inc., New York

Library of Congress Cataloging in Publication Data

Neal, Bernard George.
The plastic methods of structural analysis.

A Halsted Press book.”

Includes bibliographies and indexes.

1. Plastic analysis (Theory of structures)
L. Title.
TA652.N43 1977 624'.171 7724230
ISBN 0-470-99017-1



The
Plastic
Methods
of
Structural
Analysis



Preface

Since the first edition of this book was published in 1956, there has been a wide-
spread acceptance of the concept of limit state design. It is also generally recog-
nized that the appropriate ultimate limit state for many steel frames is plastic
collapse, so that the design of such structures is based upon an assessment of the
plastic collapse load, an appropriate load factor being provided. Whereas in 1956
the case for the use of the plastic methods had to be argued, this is no longer
necessary, and the presentation has accordingly been shortened. The Principle of
Virtual Work has been used throughout to unify the treatment.

The book is concerned with the plastic methods of analysis for beams and
plane frames, which are based upon the simplifying plastic hinge assumption. It
does not discuss the conditions under which members which have entered the
plastic range fail by instability. Nor does it deal with other problems of import-
ance in design, such as the behaviour of full-strength welded joints. Nevertheless,
the plastic methods, as presented here, can fairly be claimed to be an essential
weapon in the armoury of any competent structural designer.

Digital computers are now used extensively to solve structural problems, both
of analyis and of design. Some programs which have been developed for frames
analyse their behaviour when the simplifying assumptions of the plastic methods
are discarded, so that the actual properties of the members are taken into
account. Others deal with the optimisation of designs subject to various forms of
constraint. These developments have not been dealt with in this edition,
although a few are referred to in passing. Only those techniques which are suit-
able for hand calculation are included; these need to be thoroughly understood
as a prelude to the use of computer programs.

Earlier editions of the book contained a comprehensive bibliography. This
would now be inappropriate in view of the exclusion of a full discussion of
computer-based developments, and so there are few references to the important
work of this nature published recently. A selection of references to the classical
work which established the basic theory has been retained.

The author is most grateful to Mr John Cima for his excellent work in
preparing the illustrations, and to Mrs Eileen Wyatt whose capacity for the
speedy production of an accurate typescript is unsurpassed.

London June 1977 B. G. NEAL
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1 Basic Hypotheses

1.1 Plastic hinge and plastic collapse concepts

The plastic methods of structural analysis are now widely used in the design of
steel frames, which carry load by virtue of the resistance of their members to
bending action. Multistorey, multibay rectangular frames and single or multibay
pitched-roof portals are familiar examples of this type of structure, and the defi-
nition also includes simply supported and continuous beams. For such structures
Baker (1949) pointed out that the most economical and rational designs are
achieved by the use of the plastic methods. The plastic methods also have the
advantage of simplicity.

The objective of the plastic methods is to predict the loads at which a framed
structure will fail by the development of excessive deflections. It is appropriate
to begin by examining the behaviour of the simplest type of structure in this
category, a simply supported beam carrying a central concentrated load. Fig. 1.1
shows the results of an early test carried out by Maier-Leibnitz (1929) on an
I-beam spanning 1.6 m. The beam remained elastic up to a load W of about 130
kN, when the yield stress was attained in the most highly stressed fibres beneath
the load. At a load of about 150 kN, the central deflection § began to increase
very sharply for small increases in the load. The beam eventually failed cata-
strophically by buckling at a load of 166 kN, but before then collapse had
already effectively occurred due to the development of unacceptably large
deflections.

A slight idealization of the behaviour would be to assume that the deflection
could grow indefinitely under a constant load of 150kN, as shown by the
broken line in the figure. This assumption disregards the small additional load-
carrying capacity which the beam actually possesses above this load, and is
therefore conservative. The assumed indefinite growth of deflection under con-
stant load is termed plastic collapse, and the load 150 kN at which it occurs is
the plastic collapse load, denoted by W,.

This behaviour can be described on the hypothesis that a plastic hinge de-
velops at the centre of the beam at the load W, when the central bending
moment is 0.4 W, = 60 kN m. The characteristic of this hinge is that it can only
undergo rotation when the bending moment is 60 kNm, but while the bending
moment has this value the rotation can increase indefinitely, thus permitting an
indefinite growth of deflection. The bending moment required to develop a
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W (kN) ? FAILURE
150 }———— ———————————— >
130 PLASTIC COLLAPSE
———{YIELD
100+

§(mm)
Fig. 1.1 Test on simply supported beam (after Maier-Leibnitz)

plastic hinge in this test, 60 KN m, is termed the plastic moment of the beam,
and is denoted by M. It is related to the yield stress of the material, as will be
shown in Section 1.3. The plastic methods of analysis, based on the plastic hinge
assumption, enable the plastic collapse loads of quite complex frames to be
found rapidly, as will be seen in Chapters 3 and 4. Their usefulness as a tool for
designing steel frames depends on the fact that large deflections are unlikely to
develop before the plastic collapse load is attained. However, it may be necessary
to ensure that the deflections developed before collapse are acceptable, and
methods for estimating these deflections are discussed in Chapter 5.

The plastic methods should only be used for design if the avoidance of plastic
collapse is the governing design criterion. There will be cases in which the pri-
mary problem is to avoid other types of failure, for example by fatigue or brittle
fracture. These are outside the scope of the simple plastic theory.

It is implicitly assumed throughout that no part of the structure will fail by
buckling before the plastic collapse load is reached. The problems of buckling of
columns under the conditions actually arising in rigid frames when the members
have partially yielded, and of lateral instability and other forms of buckling
under similar conditions, have been studied extensively. The pioneering work of
J. F. Baker and his associates at Cambridge was presented in The Steel Skeleton,
vol. 2(1956), and investigations carried out under the direction of Beedle at
Lehigh were described in Plastic Design in Steel (1971). The present position has
been summarized by Horne (1972) and Wood (1972). Rules are available which
enable frames to be designed so that failure by certain types of buckling will not
occur before the plastic collapse load is attained, but their discussion is outside
the scope of this book.
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1.2 Stress-strain relation for mild steel

The plastic moment of a steel beam is directly related to the yield stress, as
already stated. As a preliminary, it is necessary to review the stress-strain proper-
ties of mild steel, the material which is commonly used in the construction of
frames.

The relation between direct stress o and axial strain € for a specimen of an-
nealed mild steel in tension has the typical form shown in Fig. 1.2(a). The re-
lation is linear in the elastic range until the upper yield stress is reached at a. The
stress then drops abruptly to the lower yield stress, and the strain then increases
at constant stress up to the point b, this behaviour being termed purely plastic
flow. Beyond b further increases of stress are required to produce further strain
increases, and the material is said to be in the strain-hardening range. Eventually
a maximum stress is reached at ¢, beyond which the stress decreases due to the
formation of a neck in the specimen until rupture occurs at d. The maximum
stress is of the order of 400 N/mm? and the strain at fracture is of the order of
0.5.

ok 04

c
d
a Oyt a
b o -
1~ Slope E
—-
(o] e 0 €
(a)

Fig. 1.2 Stress-strain relation for mild steel in tension

(a) Behaviour up to rupture
(b) Yield range

The yield range Oab is of the most interest from the point of view of plastic
theory. Since the strain at b is generally of the order of 0.01-0.02, the yield
range can be examined more conveniently if the strain scale is enlarged, as in Fig.
1.2(b). In this figure the upper and lower yield stresses are defined as o, and gy,
respectively, the slope of the initial elastic line Oa is Young’s modulus £, and the
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slope of the initial portion of the strain-hardening line beyond b is defined as E.
The strains at the yield point a and at the onset of strain hardening b are defined
as € and e, respectively. If the stress is reduced after yield a relation such as ef
is observed, the initial slope being Young’s modulus. The deviation from lin-
earity in such an unloading relation is associated with the Bauschinger (1886)
effect.

If the stress is increased again after a reduction of this sort, yield occurs at the
lower yield stress along eb. This indicates the effect of cold-working in de-
stroying the upper yield stress, which only reappears after further heat
treatment.

The values of the constants defined in Fig. 1.2(b) depend markedly on the
composition of the steel and its heat treatment, except for the value of Young’s
modulus, which shows very little variation. Data derived by Roderick and
Heyman (1951) from the results of bending tests on four annealed steels of dif-
ferent carbon content are as shown in Table 1.1.

Table 1.1 Effect of carbon content on properties of steel

% C Oo Oy €g Eg
(N/mm?) To €0 E
0.28 340 1.33 9.2 0.037
0.49 386 1.28 3.7 0.058
0.74 448 1.19 1.9 0.070
0.89 525 1.04 1.5 0.098

It will be seen that the effect of increasing the carbon content is to increase the
lower yield stress 0, while decreasing the ductility as measured by the ratio €,/
€o. For structural steel €4 is of the order 10 €y, and Ej is of the order 0.04 E, so
that the stress-strain relation is very flat after yield.

It is difficult to determine the actual tensile stress-strain relation of mild steel
in the elastic range near the yield point, because of unavoidable eccentricities of
loading which cause significant bending stresses. However, Morrison (1939)
showed that the initial departure from linearity usually observed below the yield
point could be ascribed to yielding in the most highly stressed fibres caused by
the eccentricity of loading. He therefore concluded that the yield point, pro-
portional limit and elastic limit were all coincident. The tests also showed that
the values of the upper yield stress showed no more variation from specimen to
specimen of the same material than those of the lower yield stress. The unpre-
dictable variations in the values of the upper yield stress reported by other
observers were therefore concluded to be due to variations in the eccentricity of
loading. It was also shown that for a given steel the stress-strain relation in com-
pression is practically identical with that for tension up to the point b where
strain-hardening begins.
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The yield phenomenon for mild steel is accompanied by the formation of
Liders’ lines making an angle of about 45° with the axis of the tensile specimen,
showing that plastic flow occurs on those planes where the shear stress is greatest.
The material within the Liiders’ lines has undergone a considerable amount of
slip, corresponding to a jump in the strain from a to b in Fig. 1.2(b). The longi-
tudinal strain in a yielded fibre therefore varies discontinuously along the fibre,
and a stress-strain relation such as that shown in Fig. 1.2(b) only represents aver-
age strains over a finite length.

The stress-strain relation is often idealized by the neglect of strain-hardening
and the Bauschinger effect on unloading, leading to the relation shown in Fig.
1.3(a). Although the upper yield effect is a very real one, it disappears on cold-
working and is usually not exhibited by the material of rolled steel sections.
Moreover, it will be seen in Section 1.3 that it has no effect on the value of the
plastic moment. If it is disregarded, the stress-strain relation becomes that of Fig.
1.3(b), which is often termed the ideal plastic relation.

ok aﬁ

o:.l"
O H - o=

]

1

: Slope E

‘{‘/ \

1

) *>
ojle, €

-—0’_0- -0
="Ou

(a) (b)

Fig. 1.3 Stress-strain relations neglecting strain-hardening

(a) With upper yield stress
(b) Without upper yield stress (ideal plastic)

The neglect of strain-hardening in these idealized relations may seem difficult
to justify in view of the fact that the strains will certainly enter the strain-
hardening range in many members in actual structures. However, by neglecting
the increase of stress during strain-hardening, errors will be introduced which are
on the safe side, and it will be seen in Chapter 5 that these errors are usually very
small.



6 THE PLASTIC METHODS OF STRUCTURAL ANALYSIS

1.3 Elastic-plastic bending

For a homogeneous beam of given cross section, the relationship between bend-
ing moment and curvature beyond the elastic limit can be derived from the
stress-strain relation provided that the usual assumptions of the Bernoulli-Euler
theory of bending are made. These are:

(a) The beam is bent by pure terminal couples, so that shear and axial forces
are not present.

(b) The deformations are small, so that stresses other than longitudinal nor-
mal stresses are negligible.

(c) The relation between longitudinal stress and strain is the same in flexure
as in simple tension or compression.

(d) Originally plane cross sections remain plane.

In addition it will be assumed that the stress-strain relation is of the ideal
plastic type shown in Fig. 1.3(b), with no upper yield stress. It is further as-
sumed that this relation is obeyed by each individual longitudinal fibre of the
beam. In view of the discontinuous nature of the yielding process, this assump-
tion requires experimental verification; several investigators, notably Roderick
and Phillipps (1949) have provided evidence in its favour. Finally, it is assumed
that there are no residual stresses in the beam. The analysis is simplified con-
siderably if the cross section is symmetrical with respect to an axis which lies in
the plane of bending, as happens in many practical cases.

Suppose that the beam is initially straight, and is then bent into an arc of a
circle of radius R by pure terminal couples M, say. It is shown in elementary
texts on the Strength of Materials that the longitudinal strain € at a distance y
from a neutral axis is given by

€ = Ky (1.1)

where k = 1/R is the curvature of the beam. This relation is derived from purely
geometrical considerations, and is independent of the properties of the material.
If the beam is initially curved, Equation (1.1) is still true provided that x denotes
the change of curvature produced by M.

1.3.1 Rectangular cross section

Consider the rectangular cross section of breadth B and depth D which is shown
in Fig. 1.4(a), with the bending moment M acting about an axis Ox parallel to
the sides of breadth B. In this case the neutral axis will bisect the cross section,
because of its double symmetry.

The linear variation of strain across the section implied by Equation (1.1) is
shown in Fig. 1.4(b). Here it is supposed that the strain in the outermost fibres
exceeds the strain €, which corresponds to the yield stress oo (Fig. 1.3(b)). The
yield strain €, is attained at distances * z from the neutral axis. The correspond-
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ing distribution of normal stress is shown in Fig. 1.4(c). There is an elastic core
of depth 2z outside which there are two yielded zones in which the normal stress
is of magnitude gy .

yA vA YAO'
A — =

o v/ e —+— (:;,B(g-z)
2 W: 2.7 z e
o > o G o : >0
g L 322
e 7 i N I

/ "o

Plane of bending

(a) (b) (c)

Fig. 1.4 Elastic-plastic flexure of beam of rectangular cross section

(a) Cross section
(b) Distribution of strain
(c) Distribution of stress

The bending moment M corresponding to this distribution of stress is readily
evaluated. Fig. 1.4(c) shows the resultant normal forces in the two halves of the
elastic core and in the yielded zones, and also defines their lines of action. It fol-
lows that

2
M= (;—OOBZ);lz+ooB(g—z)(§+z) = B[% —;—zz} 0.

The corresponding curvature is obtained from Equation (1.1) by noting that
€ = €9 when y = z, so that

(12)

K = €/z. (1.3)

When z = D/2, the yielded zones vanish and the stress only just attains the
yield value g, in the outermost fibres. The corresponding bending moment My is
the greatest moment that the section can withstand before yielding. It is termed
the yield moment; its value is found from Equation (1.2), with z = D/2, to be



