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Preface

When I wrote the first edition in the 1970s my goal was to present the state of
the art of a century old discipline that had recently undergone a revolutionary
transformation. After the book was reprinted in 1997 I started contemplating
a revised edition. It has soon become clear to me that in order to describe
the present day set theory I would have to write a more or less new book.

As aresult this edition differs substantially from the 1978 book. The major
difference is that the three major areas (forcing, large cardinals and descrip-
tive set theory) are no longer treated as separate subjects. The progress in
~ past quarter century has blurred the distinction between these areas: forcing
has become an indispensable tool of every set theorist, while descriptive set
theory has practically evolved into the study of L(R) under large cardinal
assumptions. Moreover, the theory of inner models has emerged as a major
part of the large cardinal theory.

The book has three parts. The first part contains material that every
student of set theory should learn and all results contain a detailed proof. In
the second part I present the topics and techniques that I believe every- set
theorist should master; most proofs are included, even if some are sketchy.
For the third part I selected various results that in my opinion reflect the
state of the art of set theory at the turn of the millennium.

I wish to express my gratitude to the following institutions that made
their facilities available to me while I was writing the book: Mathematical
Institute of the Czech Academy of Sciences, The Center for Theoretical Study
in Prague, CRM in Barcelona, and the Rockefeller Foundation’s Bellagio Cen-
ter. I am also grateful to numerous set theorists who I consulted on various
subjects, and particularly to those who made invaluable comments on prelim-
inary versions of the manuscript. My special thanks are to Miroslav Repicky
who converted the handwritten manuscript to IXTEX. He also compiled the
three indexes that the reader will find extremely helpful.

Finally, and above all, I would like to thank my wife for her patience and
encouragement during the writing of this book.

Prague, May 2002 Thomas Jech
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Basic Set Theory
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1. Axioms of Set Theory

Axioms of Zermelo-Fraenkel

1.1. Aziom of Extensionality. If X and Y have the same elements, then
X=Y.

1.2. Aziom of Pairing. For any a and b there exists a set {a,b} that
contains ezactly a and b. '

1.3. Aziom Schema of Separation. If P is a property (with parameter p),
then for any X and p there exists a set Y = {u € X : P(u,p)} that contains
all those v € X that have property P.

1.4. Aziom of Union. For any X there ezists a set Y = |J X, the union
of all elements of X .

1.5. Aziom of Power Set. For any X there exists a set Y = P(X), the
set of all subsets of X .

1.6. Axziom of Infinity. There ezists an infinite set.

1.7. Axziom Schema of Replacement. If a class F' is a function, then for
any X there exists a setY = F(X) = {F(z):z € X}.

1.8. Aziom of Regularity. Every nonempty set has an €-minimal element.

1.9. Aziom of Choice. Every family of nonempty sets has a choice func-
tion.

The theory with axioms 1.1-1.8 is the Zermelo-Fraenkel axiomatic set
theory ZF; ZFC denotes the theory ZF with the Axiom of Choice.

Why Axiomatic Set Theory?
Intuitively, a set is a collection of all elements that satisfy a certain given

property. In other words, we might be tempted to postulate the following
rule of formation for sets.
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1.10. Aziom Schema of Comprehension (false). If P is a property,
then there exists a set Y = {z : P(xz)}.

This principle, however, is false:

1.11. Russell’s Paradox. Consider the set S whose elements are all those
(and only those) sets that are not members of themselves: S = {X : X ¢ X }.
Question: Does S belong to S7 If S belongs to S, then S is not a member of
itself, and so S ¢ S. On the other hand, if S ¢ S, then S belongs to S. In
either case, we have a contradiction.

Thus we must conclude that
{X: X ¢ X}

is not a set, and we must revise the intuitive notion of a set.
The safe way to eliminate paradoxes of this type is to abandon the Schema
of Comprehension and keep its weak version, the Schema of Separation:

If P is a property, then for any X there ezists a set Y = {r € X : P(x)}.

Once we give up the full Comprehension Schema, Russell’s Paradox is no
longer a threat; moreover, it provides this useful information: The set of all
sets does not exist. (Otherwise, apply the Separation Schema to the property

In other words, it is the concept of the set of all sets that is paradoxical,
not the idea of comprehension itself. ‘

Replacing full Comprehension by Separation presents us with a new prob-
lem. The Separation Axioms are too weak to develop set theory with its
usual operations and constructions. Notably, these axioms are not sufficient
to prove that, e.g., the union X UY of two sets exists, or to define the notion
of a real number.

Thus we have to add further construction principles that postulate the
existence of sets obtained from other sets by means of certain operations.

The axioms of ZFC are generally accepted as a correct formalization of
those principles that mathematicians apply when dealing with sets.

Language of Set Theory, Formulas

The Axiom Schema of Separation as formulated above uses the vague notion
of a property. To give the axioms a precise form, we develop axiomatic set
theory in the framework of the first order predicate calculus. Apart from
the equality predicate =, the language of set theory consists of the binary
predicate €, the membership relation.
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The formulas of set theory are built up from the atomic formulas
TEY, r=y
by means of connectives
wAY, pVY, e, =Y, peoy
(conjunction, disjunction, negation, implication, equivalence), and quantifiers
Yz o, dx .

In practice, we shall use in formulas other symbols, namely defined pred-
icates, operations, and constants, and even use formulas informally; but it
will be tacitly understood that each such formula can be written in a form
that only involves € and = as nonlogical symbols.

Concerning formulas with free variables, we adopt the notational conven-
tion that all free variables of a formula

(p(uh » wie g u’ﬂ-)

are among ui, ..., Un (possibly some u; are not free, or even do not occur,
in ¢). A formula without free variables is called a sentence.

Classes

Although we work in ZFC which, unlike alternative axiomatic set theories,
has only one type of object, namely sets, we introduce the informal notion
of a class. We do this for practical reasons: It is easier to manipulate classes
than formulas.

If o(z,p1,...,pn) is a formula, we call

C={z:¢(z,p1,-..,Pn)}
a class. Members of the class C are all those sets z that satisfy o(z, p1,-..,Pn):
z € C ifandonly if o(z,p1,...,0n)

We say that C is definable from py, ..., pp; if ¢(z) has no parameters p;
then the class C is definable.
Two classes are considered equal if they have the same elements: If

C={I:‘P(J31P1v---,l’n)}, D={$:¢(zs‘h,---,4m)}’

then C = D if and only if for all z

(P(J?,Pl,. --:pn) € ¢(I,q1,-—-7Qm)-



