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Abstract

The emergence and spread of drug-resistant pathogens and our inability to develop new
antimicrobials to overcome resistance has inspired scientists to consider new targets for
drug development. Cellular bioenergetics is an area showing promise for the develop-
ment of new antimicrobials, particularly in the discovery of new anti-tuberculosis drugs
where several new compounds have entered clinical trials. In this review, we have exam-
ined the bioenergetics of various bacterial pathogens, highlighting the versatility of elec-
tron donor and acceptor utilisation and the modularity of electron transport chain
components in bacteria. In addition to re-examining classical concepts, we explore
new literature that reveals the intricacies of pathogen energetics, for example, how Sal-
monella enterica and Campylobacter jejuni exploit host and microbiota to derive powerful
electron donors and sinks; the strategies Mycobacterium tuberculosis and Pseudomonas
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aeruginosa use to persist in lung tissues; and the importance of sodium energetics and
electron bifurcation in the chemiosmotic anaerobe Fusobacterium nucleatum.
A combination of physiological, biochemical, and pharmacological data suggests that,
in addition to the clinically-approved target F,F,-ATP synthase, NADH dehydrogenase
type |l, succinate dehydrogenase, hydrogenase, cytochrome bd oxidase, and men-
aquinone biosynthesis pathways are particularly promising next-generation drug tar-
gets. The realisation of cellular energetics as a rich target space for the development
of new antimicrobials will be dependent upon gaining increased understanding of
the energetic processes utilised by pathogens in host environments and the ability to
design bacterial-specific inhibitors of these processes.

» 1. INTRODUCTION

The majority of current antimicrobials were developed during the
golden era of antimicrobial discovery. These compounds target a number of
essential processes for the growth of microbial cells, including peptidoglycan
biosynthesis, RINA and protein synthesis, DNA replication, and folic acid
metabolism. During this period, antimicrobial use became widespread, not
only in hospitals but also in agricultural environments. As quickly as new anti-
microbials were developed, however, resistance followed increasing the
demand for new derivatives through optimisation of existing molecular scaf-
folds. The burden of antimicrobial resistance was further compounded by
the lack of new drugs with unique targets to overcome resistance and by the
increasing cost of antimicrobial discovery and development. The number of
new antibiotic approvals by the FDA continues to decline contributing to
the withdrawal of pharmaceutical companies in this area (Boucheretal., 2013).
To address the emergence and spread of drug-resistant bacterial pathogens,
new drug targets and drugs with a novel mode of action are urgently required
to expand our antimicrobial armoury. The development of narrow spectrum
agents to prevent widespread resistance developing remains a priority. A key
to the development of the next generation of antimicrobials will be increased
understanding of how new targets function in the physiological context of the
pathogen. Deciphering the essential and non-essential roles of these targets in
response to the host environment will be an important question to address.

> > 2. BACTERIAL ENERGETICS AS A TARGET SPACE FOR
DRUG DEVELOPMENT

A major structural component of bacterial cells is the cytoplasmic
membrane made up of a lipid bilayer that forms a continuous barrier around
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the cell. The cytoplasmic membrane imparts structure to the cell and allows
for the selective (filter) passage of nutrients and wastes into and out of
the cell. The membrane also plays an essential role in cellular homeostasis
and energy transduction. Several new antimicrobials have been developed
that target the bacterial membrane (e.g. daptomycin and lipoglycopeptides),
leading to disruption of bacterial membrane integrity, but this target
space has remained largely unexplored (Hurdle, O’Neill, Chopra, &
Lee, 2011).

2.1. Generation of the proton motive force: An essential
property of all bacterial cells

All bacteria require a proton motive force (pmf) to grow and remain viable
under replicating and non-replicating conditions. During respiration,
energy is conserved by the generation of a pmf across a proton-impermeable
membrane. The electron transport chain components are membrane-bound
and asymmetrically arranged across the membrane to achieve net consump-
tion of protons from the cytoplasm and net release of protons on the outside
the cell. The pmf (electrochemical potential) consists of two gradients: an
electrical potential (Ay), due to the charge separation across the membrane
(positiveyside/ N€ZatiVe ngde) and a chemical transmembrane gradient of
protons (ApH, acidic,ysidge/alkaline;ngqe). At neutral pH, the pmfis predom-
inantly in the form of a Ay, but as the external pH drops, the ApH increases,
and the Ay decreases to maintain a constant pmif. Dissipation of the pmfleads
to a rapid loss of cell viability and cell death.

A variety of mechanisms are used to generate the pmfin bacteria (Fig. 1).
In obligately aerobic bacteria, the generation of a pmfis mediated primarily
by the proton-pumping components of the electron transport chain (Fig. 1,
mechanism 4). In facultative anaerobes, when alternative electron acceptors
are available (e.g. nitrate and fumarate), proton release is coupled to a ter-
minal reductase (e.g. nitrate reductase) via a pmf redox-loop mechanism
(Jormakka, Byrne, & Iwata, 2003b; Fig. 1, mechanism 2). Under strictly fer-
mentative conditions, the F;F,-ATP synthase can operate as a reversible
ATP-driven proton pump to generate the pmf (Dimroth & Cook, 2004;
Fig. 1, mechanism 3). Furthermore, in some bacteria, end-products (e.g. lac-
tate) efflux can generate a pmf (Otto, Sonnenberg, Veldkamp, & Konings,
1980; Fig. 1, mechanism 1). The flexibility of respiration in bacteria under
anaerobic conditions is further highlighted by the discovery that endoge-
nous phenazine production by Pseudomonas aeruginosa enhances anaerobic
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™ (2) (3) )

2H' + NO,~

ATP

Figure 1 Mechanisms (1-4) by which a proton motive force can be generated in bacteria.
(1) Co-transport of protons driven by solute (lactate) symport into the periplasm. (2)
Redox-loop separation of charge; quinol oxidation results in proton release into the peri-
plasm by virtue of quinol site proximity to the periplasm, while electrons are transferred
to reduce a terminal electron acceptor in the cytoplasm that results in neutralisation of
charge. (3) Proton export driven by ATP hydrolysis, i.e., ATP synthase working in the
reverse direction. (4) Proton translocation mediated by primary proton-pumping com-
plexes. (See the color plate.)

survival through maintenance of the pmf (and ATP production) via a redox
homeostasis mechanism (Glasser, Kern, & Newman, 2014).

There are a wide range of compounds that target the pmf in bacteria
(Fig. 2), including agents that inhibit the major proton pumps (e.g. rote-
none) (Fig. 2, mechanism 3) and those that facilitate proton transport
through the cytoplasmic membrane (protonophores, e.g. carbonyl cyanide
m-chlorophenyl hydrazine—CCCP) (Fig. 2, mechanism 5). The majority of
protonophores are non-specific and functional in both prokaryotic and
eukaryotic cell membranes. Individual components of the pmf can be col-
lapsed using specific inhibitors. For example, the Ay can be collapsed by
compounds that catalyse electrogenic cation transport across the cell mem-
brane (e.g. valinomycin) Valinomycin is a dodecadepsipeptide that forms a
macrocyclic molecule allowing for rapid K™ movement down its electro-
chemical gradient (Fig. 2, mechanism 1). The chemical transmembrane gra-
dient of protons (ApH) can be collapsed by nigericin through its K'/H"
antiporter (electroneutral) activity (Fig. 2, mechanism 2). Nigericin has sim-
ilar properties to monensin, a Na*/H" exchanger widely used in livestock as
a feed additive. Gramicidin is a channel-forming ionophore, making the
membrane more permeable to ions (Fig. 2, mechanism 3).

Some bacterial pathogens generate a considerable ApH in response to
acidification of host tissues (e.g. Helicobacter pylori, Salmonella enterica, and
Streptococcus  pneumoniae), and collapsing the pH gradient would be an
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NAD* + H*

NADH

Figure 2 Traditional inhibitors of proton motive force generation. (1) Valinomycin is an
ionophore, selective for potassium ions, which equilibrates the potassium gradient—
dissipating the Ay (electrogenic). (2) Nigericin is a hydrophobic weak carboxylic acid,
which can traverse the membrane as its either protonated acid or neutral salt. It dissi-
pates chemical gradients (i.e. ApH) but maintains the charge (one positive charge
exchanged for one positive charge—electroneutral). (3) Carbonyl cyanide
m-chlorophenyl hydrazine (CCCP) is an electrogenic protonophore. CCCP™ is driven
to the periplasm by the Ay, while CCCPH is driven to the cytoplasm by the ApH. It
can equilibrate both Ay and ApH. (4) Gramicidin is a channel-forming ionophore, mak-
ing the membrane more permeable to ions. (5) Rotenone inhibits primary proton
pumping—preventing the initial generation of a proton motive force. (See the color
plate.)

effective strategy in acidic tissues to eradicate these bacteria (Hall, Karem, &
Foster, 1995; Matin, Zychlinsky, Keyhan, & Sachs, 1996). The pmf has
recently been screened as a target for methicillin-resistant Staphylococcus
aureus using high-throughput screening to identify compounds that dissipate
individual components of the pmif, i.e., the Ay or ApH and synergistic com-
binations thereof (Farha, Verschoor, Bowdish, & Brown, 2013).

2.2. Diversity and flexibility of electron transport chains in
bacteria

The main pathogens discussed in this review are summarised in Table 1. The
electron transport chains both within and between these bacteria show a
remarkable diversity with regard to both electron donor and electron accep-
tor utilisation, enabling growth and persistence in a wide variety of environ-
mental niches (Fig. 3). Bacteria are able to use a range of primary
dehydrogenases to deliver electrons from central metabolism into the respi-
ratory chain to generate energy. These electrons pass through various redox
carriers to the quinone/quinol pool. In bacteria, the electron transport chain
is often branched with multiple routes to terminal respiratory oxidases or
reductases (Fig. 3). For example, Escherichia coli uses a low-affinity (WM
for oxygen) proton-pumping cytochrome bo; (haem—copper) oxidase
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Fumarate
—
reductase
» Nitrate
reductase

Formate
dehydrogenase

Vst e BN Nitrite
dehydrogenase reductase
e Quinone/ e~
Succinate | o L) Tetrathionate
dehydrogenase reductase
Cytochrome
Hydrogenase = i bo

Cytochrome
0 bd

Figure 3 Generalised schematic overview of relevant electron transfer components. Com-
plexes indicated in blue oxidise various substrates to reduce quinones. The resulting
quinol molecules can be axidised to result in reduction of various terminal electron
acceptors, mediated by the complexes indicated in green. For some electron transfer
pathways intermediate complexes and molecules exist, for example, complex Il will
generally reduce cytochrome ¢, which will serve as the electron donor for complex
IV. The complexes used, types of quinones, and intermediates thereof are highly vari-
able between genera. Only complexes relevant to this review are indicated. (See the
color plate.)

growing at high oxygen tensions, but switches to a high-affinity (nM for
oxygen) non-proton-translocating cytochrome bd oxidase when growing
at low oxygen tensions (Cotter, Chepuri, Gennis, & Gunsalus, 1990;
D’Mello, Hill, & Poole, 1995, 1996; Fig. 3). In S. enterica, the electron trans-
port chain shows considerable diversity in response to oxygen tension and
will be highlighted throughout this review.

A number of compounds have been shown to inhibit the major compo-
nents of mitochondrial and bacterial electron transport chains (Fig. 4). How-
ever, few if any studies have assessed how specific these compounds are
across different bacterial genera.

2.3. Primary respiratory dehydrogenases

2.3.1 NADH dehydrogenases: The roles of bacterial NDH-1 and NDH-2
In many bacterial pathogens, the major entry point to the electron transport
chain is the transfer of electrons from reduced nicotinamide dinucleotide
(NADH) (reduced by the oxidation of organic carbon) to quinones (e.g.
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ubiquinone or menaquinone; Fig. 3). Three different types of respiratory
NADH dehydrogenases have been identified and characterised on the basis
of reaction mechanism, subunit composition, and protein architecture
(Kerscher, Drose, Zickermann, & Brandt, 2008): the proton-pumping type
I NADH dehydrogenase (NDH-1, complex I), the non-proton-pumping
type Il NADH dehydrogenase (NDH-2; Fig. 4), and the sodium-pumping
NADH dehydrogenase (NQR, discussed in Section 2.5). Homologous to
mitochondrial complex I, bacterial NDH-1 is encoded by the nuo operon
and transfers electrons to quinone, conserving energy by translocating pro-
tons across the membrane to generate a pmf. This multimeric enzyme uses
flavin adenine dinucleotide (FAD) and nine iron—sulphur clusters to trans-
port electrons from NADH to the quinone pool. The release of the two
electrons during the NADH oxidation produces enough energy to pump
four protons across the membrane to generate a pmf (Baradaran,
Berrisford, Minhas, & Sazanov, 2013).

NDH-2 is more relevant to drug discovery. This small cytoplasmically
oriented monotopic membrane protein (40—60 kDa; Fig. 4) catalyses
electron transfer from NADH via the flavin cofactor to quinone (Heikal
et al., 2014). NDH-2 enzymes are widespread in bacteria and, while also
encoded in some eukaryotes (Melo, Bandeiras, & Teixeira, 2004), have
not been reported in mammalian mitochondria. This has resulted in the pro-
posal that they may represent a potential drug target for the treatment of path-
ogenic bacteria (Rao, Alonso, Rand, Dick, & Pethe, 2008; Teh, Yano, &
Rubin, 2007; Warman et al., 2013; Weinstein et al., 2005; Yano, Li,
Weinstein, Teh, & Rubin, 2006), as well as protozoa (Biagini,
Viriyavejakul, O’Neill, Bray, & Ward, 2006; Warman et al., 2013).

In many pathogens, there are copies of both types NDH-1 and NDH-2
in the genome (Melo et al., 2004). In the enteric pathogens E. coli and
S. enterica, these enzymes are differentially expressed, with NDH-2 primarily
being synthesised aerobically and NDH-1 being active during anaerobic res-
piration (Calhoun, Oden, Gennis, de Mattos, & Neijssel, 1993; Unden &
Bongaerts, 1997). One potential explanation for the dominant role of
NDH-2, even in the presence of NDH-1, is that lack of proton translocation
may be desirable during some conditions. NADH oxidation by NDH-2
would not be impeded by a high pmf, as would be the case with NDH-1,
which could ultimately slow metabolic flux due to back-pressure on the sys-
tem; NDH-2-mediated NADH oxidation would therefore allow for a
higher metabolic flux and increased carbon flow into biosynthetic pathways
and ultimately higher rates of ATP synthesis, at the expense of low energetic



