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As any model is only an abstraction of the real world, model uncertainty always exists. In
geotechnical engineering, the model uncertainty could be large. Lack of knowledge about model
uncertainty may lead to unrealistic predictions. When back analysis from observed performances,
model uncertainty is often mixed with parameter uncertainty and observational uncertainty. Hence it
is generally difficult to isolate and characterize model uncertainty. This book introduces the state-of-
the-art theories and methodologies for geotechnical model uncertainty characterization based on the
Bayesian theory, including both rigorous solution and approximate but practical solutions, where the
effects of parameter uncertainty and observational uncertainty on model uncertainty characterization
are appropriately addressed. The theories and methodologies are illustrated in detail with various
geotechnical problems. The book will be of general interest to readers in the profession and
particularly useful for those specializing in geotechnical inverse analysis and geotechnical reliability.
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Preface

It is widely recognized that the uncertainties involved in geotechnical engineering are much
larger than those in other disciplines such as structural engineering. The reliability theory is
one of the most effective ways for modeling and assessing the effect of uncertainties in a
geotechnical design, which has been the basis for the ongoing revision of many current
geotechnical codes in Japan, Europe, Canada, and USA. There are two types of uncertainties
in the geotechnical engineering, i.e., the uncertainties associated with input parameters,
and the uncertainties associated with calculation models. Fundamental to geotechnical
reliability analysis is the knowledge about both parameter and model uncertainties. While the
variability of model input parameters have been studied extensively, how to determine the
model uncertainty has been considered as difficult for a long time.

Through introducing the state-of-the-art methodologies for geotechnical model
uncertainty characterization, this book intends to bridge the gap between the need for
model uncertainty characterization and the lack of appropriate methodologies to do so.
The key in the methods described in this book is how to consider the effect of parameter
uncertainty and observational uncertainty appropriately and realistically during the process
of model uncertainty characterization. Both theoretically stringent and computationally
efficient methods for model uncertainty characterization are introduced and compared
utilizing various types of available observed performance data. The introduced methods are
illustrated in detail through a variety of geotechnical examples. It is believed that with the
methods and examples introduced in this book characterizing geotechnical model
uncertainty in the presence of parameter uncertainty and observational uncertainty is
feasible and is no longer difficult.

The intended readers of this book are practicing engineers and researchers dealing risk and
reliability issues in geotechnical engineering, planning, management, and decision making.

The publication of this book is supported by the Shanghai Foundation for Publication of
Science and Technology Monographs ( | ¥#F i Bl £ & 2 H Wt 3£ 4 ) and the Program for
Changjiang Scholars and Innovative Research Team in University (PCSIRT, IRT1029).
During the preparation and development of the materials for this book, the author is in
debt in many ways to Wilson H. Tang, Limin Zhang, Robert B. Gilbert, Jianye Ching,
Lulu Zhang, Kok Kwang Phoon, Charles W. W. Ng, Yeou Koung Tung and Hongwei
Huang, particularly for their encouragement, constructive comments and insightful
suggestions. The professional editing work of Hui Ji is also greatly appreciated.
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Chapter 1 Introduction

TANG W H, GILBERT R B. Case study of offshore pile system reliability [C]// Proceedings of the 25th
Offshore Technology Conference. Houston: Society of Petroleum Engineer, 1993:677 - 686.

1.1 Background

Geotechnical models built on physics and mathematics are widely used in daily geotechnical
analysis to predict the behavior of various systems. On one hand, the quality of
geotechnical design has been significantly improved by adopting these models. On the
other hand, as soil is a type of natural material with highly complicated and varying
properties, accurate modeling of soil systems is usually not easy. In developing
geotechnical models, idealized assumptions are often made to simplify the underlying
physical process. As a result, the predicted geotechnical performance may not be the actual
performance. The model uncertainty is defined as the uncertainty in the disparity between
model predictions and actual performances excluding the uncertainty in disparity caused by
uncertain model input parameters.

Knowledge on uncertainty associated with a geotechnical model is essential for assessing
the credibility of geotechnical analyses. If a geotechnical model is unconservative,
predictions based on this model could be unconservative even if conservative parameters are
adopted in the analysis, and vice versa. Tang and Gilbert (1993) and Lacasse and Nadim
(1994) commented that the calculated failure probabilities without considering model
uncertainty were not actual failure probabilities of geotechnical systems. Since the existence
of model uncertainty could distort the whole decision-making process, it is highly desirable
to understand the characteristics of model uncertainty associated with a prediction model
(Gilbert and Tang 1995; Whitman 2000; Juang et al. 2004; Nadim 2007).

In theory, one may assess the model uncertainty through a systematic comparison
between model predictions and observed system performances. During such comparison,
however, the model input parameters such as soil properties may be uncertain due to the
spatial variability of soil property, test uncertainty, and insufficient number of tests.
Moreover, the observed response may not be the actual system response due to the presence
of measurement error. Thus, model uncertainty in geotechnical engineering is often mixed
with uncertainty in model input parameter uncertainties and observational errors, making
the characterization of model uncertainty generally not easy.

Geotechnical systems can be divided into two broad categories, i.e. , scalar prediction
models and vector prediction models as defined below. A scalar prediction model refers to
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a model from which the prediction is a scalar. For instance, the model for predicting the
capacity of a shallow foundation (Fig.1.1) based on plasticity theory of the following form
(e.g., Craig 1997) is a scalar prediction model

B
qu=(Ncc)+(qu(,)+(N,ZZ—) .1

where q,=capacity of a shallow foundation; ¢=soil cohesion; g,=surcharge; y=gravity
of the soil; B=width of the strip footing; and N., Ny, N,=bearing capacity factors for
cohesion, surcharge and self weight of the soil, respectively.

Fig. 1.1 Illustration of scalar prediction model: a shallow foundation
capacity model based on plasticity theory

A vector prediction model refers to a model from which the prediction is more than a
scalar. An example of the vector prediction model is a finite element model for ground
settlement analysis, as shown in Fig. 1. 2. This model can predict the settlement at any
point within the model domain.

ERRRRER ERERARE

o

Fig. 1.2 Illlustration of vector prediction model: a finite element model
for ground deformation analysis

The methods to characterize model uncertainty of the two types of models are
different. For a vector prediction model, one can collect a set of observations from the
system under study to calibrate the corresponding model. For a scalar prediction model. as
the number of observation for each system is only one, the information from a single
system is too limited for model uncertainty characterization. In such a case, observed data
from many similar systems should be collected such that a systematic comparison between
model predictions and observed performances can be made (e. g. , Gilbert and Tang 1995;
Juang et al. 2004). The characterizations of model uncertainty using data from one system
and from multiple systems are called within-system characterization and cross-system
characterization, respectively.
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The purposes of within-system model uncertainty characterization and cross-system
model uncertainty characterization are different. In a within-system model uncertainty
characterization problem, the purpose of calibration is to provide better prediction about
the current system which provides the calibration data. In a cross-system model uncertainty
characterization problem, the purpose is to gain knowledge on the model uncertainty of the
prediction model, and to improve prediction for a future system.

Much of the previous research work on model uncertainty characterization in
geotechnical engineering belongs to within-system characterization (e. g., Ledesma 1987;
Ledesma 1991; Ledesma et al. 1996a, 1996b; Honjo et al. 1994; Honjo and Kudo 1998;
Honjo and Kashiwagi 1999; Lee et al. 1997; Lee and Kim 1999; Welker and Gilbert 2003;
Cho et al. 2006). A common assumption adopted in such work is that the prediction model
is on average unbiased. In geotechnical engineering, however, a prediction model could be
biased either towards the conservative side or towards the unsafe side. In the process of
within-system model calibration characterization, model uncertainty and model input
parameters are usually characterized simultaneously if possible. In such a case, if a
prediction model is indeed biased, ignoring this bias in model calibration will essentially
lump the model bias into the model input parameters. If the calibrated model uncertainty
and model input parameters are used to predict the future performance of the system which
provides the calibration data, the possible model bias would have been implicitly
considered in the prediction. Therefore, the assumption of no model bias is acceptable in
within-system characterization.

The above assumption however cannot be adopted in cross-system model uncertainty
characterization problems. The reason is that the purpose of cross-system characterization
is to improve the prediction for a new system. During the model characterization process,
if one assumes that the prediction model is on average unbiased, the possible bias in the
prediction model is lumped into the parameters of the systems which provide calibration
data. When the determined model uncertainty is used to predict a future system, the effect
of model bias cannot be considered because the parameters of the systems that provide the
calibration data are different from those of a new system. The well-established theory for
within-system model uncertainty characterization cannot be used for cross-system model
uncertainty characterization.

Researchers have conducted studies in cross-system model uncertainty characterization
(e.g., Gilbert and Tang 1995; Juang et al. 2004; Zhang 2005; Zhang et al. 2007; Ching
et al. 2007). As will be seen later in Chapter 2, although some success was observed,
existing methods were usually limited to the characterization of the uncertainty of some
specific models and using some specific observational data. Development of general
methods for cross-system model uncertainty characterization is still desirable.

1.2 Objective and Scope

The objective of this book is to introduce the state-of-the-art theories, solutions, and
examples for cross-system model uncertainty characterization. The problem of within-
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system model uncertainty characterization is beyond of the scope of this book. The goals
set in this book will be achieved through the following tasks:

(1) Critically review previous work on both within and cross-system model uncertainty
characterizations as well as the necessary mathematical theory for model uncertainty
characterization, so as to identify the advantages and disadvantages of the existing
methods, to highlight the characteristics of the cross-system model uncertainty
characterization problem, and to provide the background knowledge for cross-system
model uncertainty characterization.

(2) Introduce the general framework for cross-system model uncertainty
characterization. The framework would be based on the Bayesian theory. The reason to
choose a Bayesian approach is that it allows for explicit consideration of uncertainties
involved in the model uncertainty characterization process. Besides, the Bayesian method
also provides a natural way to incorporate engineering judgment in decision making, which
is very important in geotechnical engineering.

(3) Suggest casy-to-apply algorithms that can be used to implement the proposed
Bayesian framework efficiently. One practical difficulty to apply Bayesian theory is that
the computational work involved is usually large. To apply the proposed Bayesian
framework to real problems, computationally effective algorithms are required. Sound
approximations may be required to achieve such efficiency.

(4) Check the accuracies of the approximate methods for model uncertainty
characterization with rigorous solution. Once approximate methods for model uncertainty
characterization are available, an important concern is how accurate these methods are. To
answer this question, a rigorous solution for model uncertainty characterization shall be
avaible, and the results from the approximate methods shall be checked against those from
the rigorous solution.

(5) Tllustrate the described Bayesian framework and solution algorithms through a
series of application examples in which the model uncertainty is characterized utilizing
different types of observed data, and demonstrate how the methods described can help the
current geotechnical practice.

1.3 Organization of the Book

There are eight chapters in this book. In the present chapter, the engineering background,
the model uncertainty characterization problem, objectives and scope of this book are
outlined.

In Chapter 2, a literature review related to model uncertainty characterization is
presented. The review consists of three parts, i.e., within-system model uncertainty
characterization, cross-system model uncertainty characterization, and computational
techniques for implementing the Bayesian method.

In Chapter 3, a Bayesian framework for identifying model uncertainty from parameter
and observation uncertainties is presented. In this framework, a model correction factor is
used to denote the effect of model uncertainty. The mean and standard deviation of the



Chapter 1  Introduction I-E

model uncertainty factor are modeled as random variables, and their distributions are
updated simultaneously with other uncertain variables using observed performance data.
This Bayesian framework is first introduced for an additive model correction factor with
point observations, and is subsequently extended to other cases, including the case of a
multiplicative model correction factor, the case of censored observation (censored
observation means the actual system response is only known to be larger or smaller than a
certain value), and the case of model correction functions. The selection of the use of
various model correction factors or model correction functions is also discussed.

In Chapter 4, a first order second moment approximate formulation is introduced to
simplify the calculation work involved in the Bayesian formulation presented in Chapter 3.
The approximate formulation is first introduced for the additive model correction factor
with point observations, and is subsequently extended to more general cases. Two easy-to-
apply methods, i.e., a maximum posterior density method and a grid calculation method,
are used to solve the approximate formulation. These two methods are illustrated using a
slope problem, and the results from the two algorithms are compared.

In Chapter 5, an efficient Markov chain is introduced to identify model uncertainty
based on the Bayesian framework presented in Chapter 3. This chapter starts with an
analysis of the key factors affecting the efficiency of Markov chain Monte Carlo (MCMC)
simulation for model uncertainty characterization. A hybrid Markov chain is then
describled to characterize model uncertainty based on the Bayesian framework introduced
in Chapter 3 integrating the results from the approximate methods for model uncertainty
characterization described in Chapter 4. The accuracies of the two approximate methods
presented in Chapter 4 are also checked in this chapter.

In Chapter 6, the model uncertainties of limit equilibrium methods for slope stability
analysis are further studied using centrifuge model tests, and the role of model uncertainty
in a site-specific back analysis of slope failure is investigated. Based on the findings, two
convenient procedures for back analysis of slope failure are proposed. The effect of level
of uncertainty in pore water pressure on the back analysis of slope strength parameters is
also discussed.

In Chapter 7, the model uncertainty of a pile capacity model is studied where the
observed data are partially censored. The methods for model uncertainty characterization
are further illustrated and compared in this chapter. The effect of data censoring on model
uncertainty characterization is discussed. After the model uncertainty is determined, it is
used to develop partial factors for reliability based design of pile foundations. This chapter
shows how model uncertainty can be incorporated in a daily design once it is calibrated.

In Chapter 8, the Bayesian framework is applied to determine the model uncertainty
of a liquefaction model where the calibration data is fully censored. How to consider the
choice-based sampling bias in the observed database is discussed. The effect of model
uncertainty in reliability analysis is investigated in this chapter.
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2.1 Within-System Characterization

In a broad sense, within-system model uncertainty characterization can be considered as a
special case of model calibration where both uncertain model input parameters and model
uncertainty parameters are to be characterized using the observed performance data.
Model calibration has been widely used in engineering and science. Despite of numerous
researches on model calibration, many of them do not consider the existence of model
uncertainty, or the model uncertainty is assumed known even it exists. As the purpose of
this book is to estimate model uncertainty, the focus of review is on model calibration
methods related to model uncertainty characterization. The methods reviewed here
include;: D the least square method, @ the maximum likelihood method, @) Bayesian
method, and @ the extended Bayesian method.

2.1.1 Least Square Method

Let g(#) denote a vector prediction model, and @ denote its unknown parameters. The
principle of the least square method is to find an estimate for @ by minimizing the
difference between observed system response and the model prediction. This can be done
by minimizing the following misfit criterion (e.g., Beck and Arnold 1977)

SO = [g® —d]"C ' [g@ —d] 2.1

in which C= ¢°V, where ¢ is unknown and V is a known symmetric matrix denoting
disparity between the observed data and model prediction. Both the observational
uncertainty in d and the model uncertainty associated with g(8) could contribute to C. If
the observation uncertainty in d is negligible compared with model uncertainty associated
with g(@), C is dominated by the covariance matrix of the model uncertainty. In such a
case, estimating of ¢ in Eq. (2.1) provides a chance to estimate model uncertainty through
least square analysis. ¢ can be estimated using the following equation (e. g., Beck and
Arnold 1977)

G~ [g(@*) —d]'V'[g(6*) —d]

2.2
— (2.2)

where 8° =0 that minimizes Eq. (2. 1); n =number of observations; and k = dimension
of 0.
The least square method can be divided into several types. If V is an identity matrix, it
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is often called ordinary least square analysis; otherwise it is called weighted least square
analysis. If g(@) is a linear model, it is called linear least square analysis; otherwise it is
called nonlinear least square analysis (Beck and Arnold 1977).

Although the least square method was widely used in statistics for regression analysis,
calibrating mechanistic models are often much more difficult than performing a regression
analysis (e. g., Cooley 1977; Cooley 1979). This is because the mechanistic model g (@)
could be complicated partial differential equations, which may make the minimization
process involved computationally challenging. The above statement is also true for other
methods reviewed in this chapter for model uncertainty characterization.

Traditionally, the mathematical programming theory was used to optimize Eq. (2.1).
Yeh (1986) summarized optimization algorithms used in groundwater flow model
calibration and noticed that the modified Gauss-Newton algorithms were most frequently
used because they do not require the calculation of Hessian matrix and their convergence
rates are superior to gradient based optimization algorithms. In recent years, some newly
developed optimization theories were also applied to model calibration problems. For
instance, Levasseur et al. (2007) demonstrated the application of genetic algorithm to
calibrate a nonlinear finite element model for pit excavation. Meier et al. (2008) applied
the particle warm algorithm to calibrate the finite element model for a natural slope.

A problem that can arise in minimizing Eq. (2. 1) is that the calibrated results could be
unstable (e.g., Shah et al. 1978; Yakowitz and Duckstein 1980). The instability is often
associated with the phenomena that a small change in the observed data could result in
large change in the model calibration results. If instability indeed occurred, Carrera et al.
(2005) summarized four schemes to solve the instability problem:

(1) Regularizing the problem by incorporating prior information in the minimization
criteria (e. g., Cooley 1982; Weiss and Smith 1998).

(2) Reducing the number of uncertain variables to calibrate.

(3) Increasing the number and type of data.

(4) Optimizing the observation scheme: observation networks and experiments can be
designed to minimize model uncertainty and/or to increase the ability of data to
discriminate among alternative models (Knopman and Voss 1989; Usunoff et al.1992).

Shah et al. (1978) showed that instability was more likely to occur as the number of
variables to be calibrated increased while fixing the observed data. This implied that one
important cause for instability was that the amount of observed data was not sufficient to
calibrate a large number of uncertain variables. The reason for the occurrence of instability
in such a case can be explained as follows. In general, both parameter uncertainty and
model uncertainty contribute to the prediction uncertainty. As the number of parameters to
be calibrated involved in a model increases, while the model has more freedom to fit the
data well (i.e., model uncertainty is reduced), the uncertainty involved in the calibrated
parameters would also increase. When the number of parameters to be calibrated is too
large, the parameter uncertainty would also be very large, thus causing instability to the
calibration results. Hence, there shall be an optimum trade-off between model uncertainty
and parameter uncertainty, and the number of free parameters involved in a model should
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be limited. Yeh and Yoon (1976) and Shah et al. (1978) studied the optimum number of
free parameters in the framework of least square analysis. Honjo et al. (1994) and Neuman
(2003) studied this problem using model selection approaches based on information theory
and Bayesian method, respectively. Various model selection approaches will be reviewed in
a later section.

A practical difficulty for applying the least square method is that programming work
involved in implementing least square method is often extremely heavy (Poeter and Hill
1997) when g (@) is a complicated numerical model. Some general purpose optimization
software has been developed, such as VisualDOC (Vanderplaats 1998), iSIGHT
(Engineous 1999), OPTIMUS (LMS 1999), and ModelCenter (Phoenix 1999). By viewing
the application of least square method as an optimization problem, such software may
potentially used to calibrate geotechnical models. In the groundwater flow modeling field,
some inverse software for automated model calibration based on non-linear least square
method has also been developed, including MODINV (Doherty 1990) , MODFLOWP (Hill
1992), PEST (Doherty 1994) and UCODE (Poeter and Hill 1998). It is likely that such
software can also be used to calibrate geotechnical models. In fact, some pioneering work
in this direction has been performed (e. g. , Calvello 2002; Calvello and Finno 2004; Finno
and Calvello 2005; Calvello et al. 2008; Rechea et al. 2008; Hashash and Finno 2008). As
an example, Calvello and Finno (2004) calibrated a non-linear finite element model for pit
excavation implemented in Plaxis 7. 11 using UCODE. Note at present UCODE is free and
can be downloaded from http://typhoon. mines. edu/freeware/ucode/. Although such
software is developed for calibrating models using the least square method, it is very likely
that other methods such as Bayesian methods can also be implemented in such software,
thus greatly facilitating the application of these methods.

2.1.2 Maximum Likelihood Method

The basic idea in the maximum likelihood method is to first derive the probability of
observing the data in terms of the unknown variables, which is called likelihood function,
and then estimating the unknown variables by maximizing the likelihood function (e. g. ,
Azzalini 1996, Ang and Tang 2007). For instance, suppose the model uncertainty can be
described by a multivariate normal distribution with a mean of zero and a covariance
matrix of C= sV, where ¢ is unknown and V is known. Assuming the observational
uncertainty is negligible, the probability to observe d is (e.g., Beck and Arnold 1977)

10, ¢ | d) = _exp{[g(® —d]"C'[g(® —d]} (2.3)

SR S
o2 C|

where n=dimension of d.

The logarithm of the likelihood function is
Ini@, ¢ | d) =- %[g(ﬂ) -d]'"C'[g@® -d]- %m(zn) - %lnIC} (2.4)

Both 6 and ¢ can be estimated by maximizing the chance to observe d, i.e. Eq. (2.3)
or Eq. (2.4). Note the third and forth terms at the right side of Eq. (2.4) do not depend
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on 0. Therefore, the maximization of Eq. (2. 4) with respect to @ is equivalent to the
minimization of Eq. (2.1) with respect to 8. It can also be shown that the best estimate of
o is the same as Eq. (2. 2) (e.g., Beck and Arnold 1977). Therefore, under the
assumptions made above, the best estimates for § and ¢ from the maximum likelihood
method are the same as that from the least square analysis. If the model uncertainty is not
multivariate normal, this conclusion may not be valid. In this sense, the least square
method can be viewed as a special case of the maximum likelihood method.

The maximum likelihood method has been widely used for model calibration. In
structural engineering, Beck and his coworkers did active research in calibrating structural
models using the maximum likelihood method, including the calibration of models of
buildings (Beck and Jennings 1980; Werner et al. 1987), a bridge (McVerry and Beck
1983), and an off-shore platform (Mason et al. 1989). The models in the above papers
were all linear and the uncertainties in the calibrated parameters were not characterized.
The maximum likelihood method was later extended to calibrate nonlinear models (e. g. ,
Jayakumar and Beck 1988), and to consider the uncertainties associated with the calibrated
model parameters (e.g., Beck and Katafygiotis 1998a, 1998b). The maximum likelihood
method is also suggested to calibrate geotechnical models (e. g., Ledesman et al. 1996a,
1996b; Gens et al. 1996). As an example, Gens et al. (1996) calibrated a tunnel excavation
model using the maximum likelihood method.

As the maximum likelihood method depends on the minimizing similar misfit criteria
as that in the least square method, problems associated the least square method such as
instability also challenge the application of maximum likelihood method. Compared with
least square method, however, the maximum likelihood method has several possible
advantages. First, the least square method usually can only use uncensored data for model
calibration, while the maximum likelihood method can use both censored and uncensored
data (Wang 2002). Second, as will be seen later in this review, the results from the
maximum likelihood method is closely related to model comparison criteria such that
potential models can be ranked easily with respect to their prediction accuracy if the
maximum likelihood method is used. Thirdly, as will be seen later, results from the
maximum likelihood method can also be used to calculate model weights and model
probabilities such that predictions from various models could be combined together for an
improved prediction.

2.1.3 Bayesian Method

Bayesian method is a probabilistic approach that can be used to update prior knowledge
with observed data in a formal way. In Bayesian method, uncertain variables are modeled
as random variables, and their distributions are updated using the observed data. The
general Bayesian theory and its computational methods are reviewed in a later section in
this chapter. The focus of this section is to review its application in model calibration.
Gavalas et al. (1976) matched the history of a reservoir using the Bayesian method. In
Gavalas et al. (1976), the model uncertainty is assumed negligible compared with
observational uncertainty. The prior distribution about model input parameters is assumed
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