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Preface

Since the discovery of fluorine by Henri Moissan at the end of the 19th
century, fluorine chemistry has developed many applications in energy conver-
sion, medicine, biology, agriculture, telecommunication and so on. However, flu-
orine chemistry is not widely spread probably because of the difficulty in the
fluorination techniques and handling of fluorinating reagents and fluorides.
Elemental fluorine is a typical fluorinating gas with high reactivity arising from
its small dissociation energy. Efficient production of elemental fluorine by molten
salt electrolysis is still one of the important research subjects in fluorine chemistry
notably because of industrial applications in nuclear energy field. A new and
promising aspect in fluorine chemistry is the applications of fluorination reactions
and various fluorides to energy conversion materials for lithium batteries, fuel
cells, solar cells etc. Many examples regarding the introduction of fluorine into
lithium battery materials, that is, fluorination of carbonaceous anodes and oxide
cathodes, synthesis of new fluorine containing electrolytes, fluorination of organic
solvents and so on, were recently reported and revealed the importance of fluorine
chemistry in this field. It was also shown that the fluorinated materials had impor-
tant roles in fuel cells and solar cells. This summarizes the recent advances on
these topics. All authors are specialists actively working in fluorine chemistry,
electrochemistry, polymer chemistry and solid state chemistry. We hope that the
book offers new aspects of fluorine chemistry to readers in the various fields.

Tsuyoshi Nakajima and
Henri Groult
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Chapter 1

Experimental and theoretical aspects of the fluorine
evolution reaction on carbon anodes in molten KF-2HF

H. Groult, C. Simon, A. Mantoux, F. Lantelme, and P. Turq

Laboratoire LI2C, CNRS UMR 7612, Université Pierre & Marie Curie- Case
courrier 51, 4 place Jussieu, 75252 Paris cedex 05, France

1. PROPERTIES AND INDUSTRIAL USES OF FLUORINE GAS

Fluorine gas is a yellowish, poisonous and highly corrosive gas which reacts with
practically all organic and inorganic substances [1-6]; it reacts with all elements
except helium, neon and argon to form ionic or covalent fluorides. Until World
War 11, there was no commercial production of elemental fluorine. However, due
to the development of the atomic bomb and nuclear energy applications, the pro-
duction of large amounts of elemental fluorine became necessary. Now, F, gas can
be considered as a necessary intermediate in uranium isotopic enrichment: separa-
tion of the isotopes of natural uranium is carried out by a diffusion process involv-
ing gaseous UF,. Uranium tetrafluoride (UF,) is first produced by the reduction of
the oxide H, or NH; and fluorination by HF at 400-600°C according to

U0, + H, - UO, + H,0 (D
U0, + 4HF — UF, + 2H,0 ' (2)

UF; is then prepared by the reaction of fluorine gas and UF, at a high tempera-
ture (> 1000°C) according to

UF, + F, — UF, 3)

Uranium enrichment performed by gaseous diffusion or ultracentrifugation con-
sists of increasing the content of natural uranium’s in isotope 235 to levels up to
3-5%. About 90% of the nuclear reactors currently in operation use this type of
enriched uranium.
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In the coming decades, energy consumption is expected to rise signifi-
cantly, due to dramatic increases in world population, coupled with the industri-
alisation of developing countries, notably in Asia and Latin America. Since the
beginning of the 20th century, the emission of greenhouse gases has risen drasti-
cally because of the use of fossil fuels in industry and transportation. This emis-
sion is expected to increase considerably in the near future. Thus, to respect the
climatic and environmental equilibrium, intense research programmes are being
devoted to the development of renewable energies (solar, wind, etc.); however,
the latter have, at the present time, a limited potential. Therefore, nuclear power,
which could be considered as an environmentally safe form of energy since it
does not produce harmful gases contributing to the greenhouse effect, should
play an important role in the production not only of electricity, but also of other
energy sources (hydrogen, etc.). For example, it generates 110 times less CO,
than natural gas and close to 240 times less CO, than coal for electricity produc-
tion. In the European Union, nuclear energy accounts for 35% of electricity pro-
duction, thereby avoiding the emission of 300 million tonnes of CO,. In 2001,
the installed capacity of all types of nuclear power plants in the world amounted
to 358,000 MW, about a quarter in the United States (over 100,000 MW) and
about 17% in France (almost 60,000 MW). Thirty-two reactors are under con-
struction worldwide: 22 in Asia and 10 in central and eastern Europe.

Fluorine gas is not only devoted to the synthesis of UF, but is also widely
used for the preparation of various fluorinated compounds involved in different
industrial processes: WF, for depositing tungsten on insulating or conducting
substrates by CVD, NF; for etching semiconductors, graphite fluorides (CF,,
0.5 = x = 1.24) for use as cathodes in primary lithium batteries and as lubricat-
ing agents, SF, as insulating gas in electric devices, CIF; to clean semiconductor
fabrication vessels in the computer chip industry, CoF; as solid fluorine carriers
and F,—N, mixture to strengthen the surface properties of plastics (impermeabil-
ity, chemical resistance, barrier effect, etc.) or to control the fluorination of mol-
ecules in organic chemistry.

Therefore, it seems to be of prime importance to study in detail the fluorine
evolution reaction (FER) in order to optimise the process and to satisfy the
increasing industrial requirement for this gas.

The purpose of this review paper is to provide a brief overview of both
experimental and theoretical aspects of the FER on carbon anode in KF-2HF.
The process has been analysed of by correlating results deduced from electro-
chemical tests in KF-2HF, ex situ surface characterisations, notably by AFM and
STM, and numerical calculations. Owing to molecular dynamics simulations of
molten KF-2HF, the constituents of KF-nHF melt have been identified, depend-
ing on the temperature and the HF content in KF—nHF. The origin of the strong
adhesion of fluorine bubbles on the surface is also discussed. Finally, the partic-
ular shape of fluorine bubbles generated on horizontal carbon anodes in KF-2HF
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is studied from a theoretical point of view taking into account capillary forces
between the electrode surface and the gas—liquid interface.

2. ANALYSIS OF THE PREPARATION PROCESS

2.1. Generalities

In 1886, the French scientist Henri Moissan prepared, for the first time, flu-
orine by electrolysis of anhydrous hydrogen fluoride containing a small amount
of potassium fluoride in an electrochemical cell with platinum—iridium elec-
trodes. KF was used to render HF conducting. The description of industrial cells
is widely reported in the literature [1,2,7]; briefly, the cells operate at 6 kA and
contain molten KF-2HF (40.8 wt% HF) with about 24 plate carbon anodes and
steel or iron cathodes. Carbon anodes are used to avoid dissolution occurring
with most metals in parallel with the evolution of fluorine; in addition, graphite
must be avoided since exfoliation takes place due to co-intercalation of ionic
species and fluorine gas between the lamellar graphene sheets. Monel skirts are
also required to separate the hydrogen and fluorine gases formed at the cathode
and the anode, respectively, and to avoid their explosive recombination. The
global reaction involves HF decomposition:

2HF ) > F, ) + Hy C))

The two corresponding half-cell reactions are supposed to involve the HF, ™ elec-
trochemical species:

F, + HF + e~ (5)

19—

HE,” —
at the anode, and
2HF + e~ — 3 H, + HF,~ (6)

at the cathode.
First, molecular dynamic simulation of KF-nHF was investigated depend-
ing on the HF ratio and the temperature of the melt.

2.2. Molecular dynamics model for KF-nHF electrolytes

Within the framework of improvement of fluorine generation process, the
model developed for KF—nHF electrolytes was intended to provide not only struc-
tural properties of the liquid (e.g. thermodynamical data, speciation, etc.) but also
dynamical properties, especially transport coefficients such as self-diffusion coef-
ficients, electrical conductivity and viscosity. This would make it possible, in prin-
ciple, to address most of the previously cited problems on the microscopic scale.
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Among the available simulation techniques, ab initio molecular dynamics
(AIMD) was the only one previously used to study KF-2HF [8]. While it is accu-
rate, it needs very few hypotheses, and is computationally extremely intensive,
making it unsuitable for the long simulations needed for transport properties
computation. Lighter techniques such as Monte-Carlo simulations or integral
equations based methods were also rejected because they were unable to predict
transport properties. The only theoretical method left to investigate KF—HF elec-
trolytes was therefore classical molecular dynamics (MD) [9]. This statistical
mechanics-based simulation method is fast and provides all the desired results as
soon as the model used therein is adequately defined. Transport properties have
been examined with the herein presented iono-molecular model [10], but we will
focus only on the structural features of the liquid.

Molecular dynamics requires the description of the interaction forces
between the liquid constituents. In pure molecular liquids, for example HF, this
means defining the forces applied to each molecule by their surrounding molecu-
lar neighbours. In high-temperature molten salts, such as KF, this means defining
the forces acting on each fluorine and potassium ion. But in KF-2HF, the micro-
scopic nature of the constituents is still unknown: in electrochemistry, HF,™ is
often postulated, but there are no hints on how much HF are turned in that ionic
form, how much in “neutral” HE. Oligomers are known to form in pure HF [11].
Polyfluorides, both centred F(HF),” and chained H,F,,,”, have also been
revealed in several condensed phases [12-15]. In fact, the question is whether
KF-2HF is a molecular liquid or an ionic liquid. Is KF-2HF closer to pure HF or
to molten KF? The point of view adopted is crucial for acidity definition. Up to
now, the only attempt was based on Bronsted acidity [16], but why not try with
Lewis fluoroacidity pF? This only depends on the nature of the species on the
microscopic scale, which is in general known from direct observation.

The paucity of available physical-chemistry data was an important obstacle
to the definition of the model: to our knowledge, there are still no data on
infrared, Raman spectroscopies, neutron scattering, and NMR spectroscopy
(numerous corresponding data exist for the solid, but were not available for the
liquid case). Therefore, the nature of the components was unknown, and a for-
tiori the forces acting between them.

The only direct information about the liquid structure was given by AIMD
[8], showing essentially centred polyfluorides and transitionally chained ones.
We therefore decided to build an iono-molecular model to retrieve these F(HF), ™,
and their proportions, as a function of n.

We denoted our model as iono-molecular since it describes, on the one hand
HF molecules and K* and F~ ions on the other. For alkali halides, the models
developed by Fumi and Tosi [17] are indeed well tested and used to describe
accurately the solid phases, pure molten salts, their mixtures and even aqueous
solutions of the salts. For KF, we used the interactions given in Table 1.
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The centred polyfluorides essentially consist of a fluorine ion solvated by
HF molecules. In these F(HF),~ complexes, the fluoride-hydrogen distance dy;.
ranges from 1.35 to 1.7 A depending on n, and is very similar to an ordinary
H-bond. For pure HF, several models have been developed. Only one of them
explicitly describes the H-bond between HF molecules (H-bond is implicit in the
others and results from Coulomb or dipole interactions): the HF3 model derived
by Klein and McDonald [18] (see Table 2). We therefore decided to use this
model for our HF molecules, and to apply the H-bonding Morse potential (V)
between HF molecules and fluoride. In addition to the attractive coulombic inter-
action between positively charged H and fluoride anions, this was intended to
yield the right dy- shorter than the H-bond in pure HF (1.8 A).

The system was simulated at different temperatures ranging from 330 to
410 K (56.85 to 136.85°C). The initial simulation cell consisted of 384 atoms (64
times KF-2HF units) randomly arranged to get a density extrapolated, for each
simulation temperature, from experimental data [19]. The coulombic forces were
computed with an ordinary Ewald algorithm, the HF molecules were handled

Table |
Interaction potential for K* and F~ ions

Parameter ++ 4 i
cy 1.25 1.00 0.75
0; (A) 2.926 2.642 2.358
C; (107 Jm®) 243 19.5 18.6
D,(10 Im®) 24.0 21.0 22,0

Note: Analytical form is V; = ZZe\r—bc,; exp[B(c;—r)]
—Cyr *=Dyr S with b =338x 107" Jand B =2.96x 10" m™".

Table 2
Interaction potential for HF molecules

Pair Potential

H-F 2(exp(—10.6(r—1.6))—exp(—5.6(r—1.6)))
H-H 600exp(—3.34r)

F-F 2 X 10°exp(—4.25r)—VPISP

Note: Distances are in A and energies in kcal mol~' with
VPSP = fir)(220\° + 400\ + 4500\r'%), where
fir) =exp(—@7/r—12) if r=4.7 and fir) = 1 if r>4.7.



