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Preface

Markov Decision Processes (MDP) is a branch of mathematics based
on probability theory, optimal control, and mathematical analysis. Sev-
eral books with counterexamples/paradoxes in probability [Stoyanov(1997):
Szekely(1986)] and in analysis [Gelbaum and Olmsted(1964)] are in exis-
tence; it is therefore not surprising that MDP is also replete with unex-
pected counter-intuitive examples. The main goal of the current book is to
collect together such examples. Most of them are based on earlier publica-
tions; the remainder are new. This book should be considered as a com-
plement to scientific monographs on MDP [Altman(1999); Bertsekas and
Shreve(1978); Hernandez-Lerma and Lasserre(1996a): Hernandez-Lerma
and Lasserre(1999); Piunovskiy(1997); Puterman(1994)]. It can also serve
as a reference book to which one can turn for answers to curiosities that arise
while studying or teaching MDP. All the examples are self-contained and
can be read independently of each other. Concerning uncontrolled Markov
chains, we mention the illuminating collection of examples in [Suhov and
Kelbert(2008)].

A survey of meaningful applications is beyond the scope of the current
book. The examples presented either lead to counter-intuitive solutions.
or illustrate the importance of conditions in the known theorems. Not all
examples are equally simple or complicated. Several examples are aimed
at undergraduate students, whilst others will be of interest to professional
researchers.

The book has four chapters in line with the four main different types
of MDP: the finite-horizon case, infinite horizon with total or discounted
loss. and average loss over an infinite time interval. Some basic theoretical
statements and proofs of auxiliary assertions are included in the Appendix.
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The following notations and conventions will often be used without ex-
planation.

= means ‘equals by definition’;

C™ is the space of infinitely differentiable functions:

C(X) is the space of continuous bounded functions on a (topolog-
ical) space X:

B(X) is the space of bounded measurable functions on a (Borel)
space X; in discrete (finite or countable) spaces, the discrete topol-
ogy is usually supposed to be fixed:

P(X) is the space of probability measures on the (metrizable) space
X, equipped with the weak topology;

If I is a subset of space X then I'“ is the complement;

IN = {1,2,...} is the set of natural numbers; IN; = INU{0}:

R" is the N-dimensional Euclidean space; R = R' is the straight
line;

R* = [—00, +00] is the extended straight line;

R™ = {y > 0} is the set of strictly positive real numbers:
I{statement] = { 1. ?f the statement i correct: is the indicator
0, if the statement is false;

function;

04 (dy) is the Dirac measure concentrated at point a: §,(I') = I{I' 3
a};

If r € R* then 7+ 2 max{0,r}, r~ = min{0,r};

m m

A AL,
E fi =0 and Hf,-:l if m < n;
i=n i=n

[7] is the integer part, the maximal integer i such that i < r.

Throughout the current book X is the state space, A is the action
space, pi(dy|r,a) is the transition probability, ¢;(x,a) and C(x) are the
loss functions.

Normally, we denote random variables with capital letters (X)), small
letters () being used just for variables, arguments of functions, etc. Bold
case (X) is for spaces. All functions, mappings, and stochastic kernels
are assumed to be Borel-measurable unless their properties are explicitly
specified.

We say that a function on R ‘with the values in a Borel space A is
piece-wise continuous if there exists a sequence y; such that lim; .. y; =
oo; limjy o y; = —oc, this function is continuous on each open interval
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(yi.yi+1) and there exists a right (left) limit as y — y; + 0 (y — yi1 — 0),
i =0,+1,£2.... A similar definition is accepted for real-valued piece-wise
Lipschitz, continuously differentiable functions.

If X is a measurable space and v is a measure on it, then both formulae

/x f(x)dv(r) and /x f(r)v(dr)

denote the same integral of a real-valued function f with respect to v.

w.r.t. is the abbreviation for ‘with respect to’, a.s. means ‘almost
surely’, and CDF means ‘cumulative distribution function’.

We consider only minimization problems. When formulating theorems
and examples published in books (articles) devoted to maximization, we
always adjust the statements for our case without any special remarks.

It should be emphasized that the terminology in MDP is not entirely
fixed. For example, very often strategies are called policies. There exist
several slightly different definitions of a semi-continuous model, and so on.

The author is thankful to Dr.R. Sheen and to Dr.M. Ruck for the proof
reading of all the text.

A.B. Piunouvskiy
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Chapter 1

Finite-Horizon Models

1.1 Preliminaries

A decision maker is faced with the problem of influencing the behaviour
of a probabilistic system as it evolves through time. Decisions are made
at discrete points in time referred to as decision epochs and denoted as
t=1,2.....T < o0. At each time ¢, the system occupies a state r € X.
The state space X can be either discrete (finite or countably infinite) or
continuous (non-empty uncountable Borel subset of a complete, separable
metric space. e.g. R'). If the state at time ¢ is considered as a random
variable, it is denoted by a capital letter X;: small letters x; are just for
possible values of X;. Therefore, the behaviour of the system is described
by a stochastic (controlled) process

Xo, X1, X2,..., X7

In case of uncontrolled systems, the theory of Markov processes is well
developed: the initial probability distribution for Xy, Py(dr), is given, and
the dynamics are defined by transition probabilities p;(dy|x). When X
is finite and the process is time-homogeneous, those probabilities form a
transition matrix with elements p(jli) = P(Xi41 = j| X = 1).

In the case of controlled systems, we assume that the action space A is
given, which again can be an arbitrary Borel space (including the case of
finite or countable A). As soon as the state X; ; becomes known (equals
x¢_1). the decision maker must choose an action/control 4; € A: in general
this depends on all the realized values of X¢, Xi.,..., X;_ along with past
actions Ay, As. ..., A;_1. Moreover, that decision can be randomized. The
rigorous definition of a control strategy is given in the next section.

As a result of choosing action a at decision epoch t in state x, the de-
cision maker loses ¢;(r, a) units, and the system state at the next decision
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epoch is determined by the probability distribution p;(dy|z,a). The func-
tion ¢y(x,a) is called a one-step loss. The final/terminal loss equals C'(x)
when the final state X = z is realized.

We assume that the initial distribution Py(dx) for X is given. Suppose
a control strategy 7 is fixed (that is. the rule of choosing actions a;; see the
next section). Then the random sequence

Xo. A1, X1, A2, Xo, ..., Ap, X1
is well defined: there exists a single probability measure P on the space
of trajectories
(xg,a1. 21,02, 29, ....ar.27) € X x (A x X)7.

For example, if X is finite and the control strategy is defined by the map
a; = @i(xy—1), then

P;;A”{‘X’() = 1'.‘4] = (Ll.Xl - _] A-z = (1‘2..»\’2 = ‘\ ...... X -T—l = I.AT = (I»Tu\’"l‘ = 772}

= Py(i)[{ar = o1())}p1(jlisar) I{a2 = @2())} ... pr(mll, ar).
Here and below, I{-} is the indicator function; if X is discrete then transi-
tion probabilities p; (-
The same is true for the initial distribution.
Therefore, for a fixed control strategy m, the total expected loss equals
v™ = EF, [W], where

x,a) are defined by the values on singletons p;(y|x, a).

T
W =3 a(Xi 1, A)+C(Xr)
=1
is the total realized loss. Here and below, ET, is the mathematical expec-
tation with respect to probability measure Pf, .
The aim is to find an optimal control strategy 7 solving the problem
T
> a(Xi1, A + C(X7)
t=1
Sometimes we call v™ the performance functional.
Using the dynamic programming approach, under some technical con-
ditions, one can prove the following statement. Suppose function v;(x) on

v" = Ep, —>i1;f. (1.1)

X satisfies the following equation
vr(x) = C(x);
vi—1(x) = inf {(:t(;r.a) + / U,(y)p,(dylx'.a,)}
acA Jx

= cr(, 7 (2)) +/ ve(y)pe(dyle, @i (x));  t=T,T—1,...,1
X
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Then, the control strategy defined by the map a; = ¢j (x;—1) solves prob-

lem (1.1), i.e. it is optimal; info™ = / vo(x) Py(dx). Therefore, control
™
X

strategies of the type presented are usually sufficient for solving standard
problems. They are called Markov selectors.

1.2 Model Description

We now provide more rigorous definitions.
The Markov Decision Process (MDP) with a finite horizon is defined by
the collection

{X,A,T,p,c,C},

where X and A are the state and action spaces (Borel); T is the time
horizon; py(dylz.a). t = 1,2,.... T. are measurable stochastic kernels on
X given X x A: ¢;(r,a) are measurable functions on X x A with values
on the extended straight-line R* = [—o0, +oc]; C'(x) is a measurable map
C': X — R". Necessary statements about Borel spaces are presented in
Appendix A.

The space of trajectories (or histories) up to decision epoch t is

H  2Xx(AxX)!, t=1,2,....,T: HE2Xx(AxX)T.

A control strategy ™ = {m}l_, is a sequence of measurable stochastic
kernels

'/Ty(d(ll.l’()‘ [1 A B 1 PR (If_l..l‘p_l) = 7r,(da|h,,1)

m

on A, given H; . If a strategy 7™ is defined by (measurable) stochastic

kernels 7" (da|z;—1) then it will be called a Markov strategy. It is called
semi-Markov if it has the form m(da|vy,z,—1). A Markov strategy =™*
is called stationary if none of the kernels 7™%(da|r;—1) depends on the
time t. Very often. stationary strategies are denoted as 7°. If for any
t = 1,2:455; T there exists a measurable mapping ¢;(hy—1) : Hy—3 — A
such that 7 (Clhy 1) = I{T' 3 ¢;(hy—1)} for any T" € B(A), then the strat-
egy is denoted by the symbol ¢ and is called a selector or non-randomized
strategy. Selectors of the form ¢ (x;—1) and @(xy—1) are called Markov
and stationary respectively. Stationary semi-Markov strategies and semi-
Markov (stationary) selectors are defined in the same way. In what follows,
AA s the collection of all strategies, AM is the set of all Markov strate-
gies, AMN ig the set of all Markov selectors. In this connection, letter N
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corresponds to non-randomized strategies. Further, AS and ASY are the
sets of all stationary strategies and of all stationary selectors.

We assume that initial probability distribution Py(dx) is fixed. If a con-
trol strategy 7 is fixed too, then there exists a unique probability measure
Pg on H such that P,’;U(F'\') = Py(TY) for T € B(Hp) = B(X) and, for all
t=1,2,...,T, for TS € B(H;_; x A), T¥ € B(X)

PE (TS xI“X):/ pe(TX |2 1) PE, (dgr)

l‘(.’

and
P (TH < T4) = / w1 )PE, (dhe)
r
for T" € B(H,_;). I'* € B(A). Here, with some less-than-rigorous nota-
tion, we also denote Pp () the images of Pp relative to projections of the
types

HoH  xA2G, t=12....T,andH—>H,, t=0,12....T
(1.3)
gt = (xg,a1,21, ..., a;) and hy = (xg,a1,21,...,a4, ;) are the generic el-

ements of G; and H;. Where they are considered as random elements on
H. we use capital letters Gy and H;, as usual.

Measures Pf (-) on H are called strategic measures; they form space D.

One can introduce o-algebras G, and F; in H as the pre-images of B(Gy)
and B(H;) with respect to (1.3). Now the trivial projections

(xg.a1,x1.....,ap. ) — x; and (xg,ay, x1,...,a7,T7) = @4

define F-adapted and G-adapted stochastic processes { X;}/_, and {A;}]_,
on the stochastic basis (H,B(H), {Fo.G1. Fi.-... Gr,Fr}. Pp,). which is
completed as usual. Note that the process A; is F-predictable, and that
this property is natural. That is the main reason for considering sequences
(rg,ar,o1...., ar,rr), not (ro,ap,ry,..., ar—_1.xr). The latter notation
is also widely used by many authors.

For each h € H the (realized) total loss equals

B

w(h) = ZC,(.I't_l.at) + C(xr),

=i

. . , :
where we put “+o0” + “ —oc” = “+o0”. The map W : h — w(h) defines
the random total loss, and the performance of control strategy = is given
by v™ = Ef, [W]. Here and below,

ER W] 2 ER [WH + ER[W™]; “+00” +“— 00" 2 ¢4 00”;



