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Preface

This book gives an introduction to C*-algebras and their representations on
Hilbert spaces. We have tried to present only what we believe are the most basic
ideas, as simply and concretely as we could. So whenever it is convenient (and it
usually is), Hilbert spaces become separable and C *-algebras become GCR. This
practice probably creates an impression that nothing of value is known about other
C*-algebras. Of course that is not true. But insofar as representations are con-
cemned, we can point to the empirical fact that to this day no one has given a
concrete parametric description of even the irreducible representations of any
C*-algebra which is not GCR. Indeed, there is metamathematical evidence which
strongly suggests that no one ever will (see the discussion at the end of Section
3.4). Occasionally, when the idea behind the proof of a general theorem is exposed
very clearly in a special case, we prove only the special case and relegate
generalizations to the exercises.

In effect, we have systematically eschewed the Bourbaki tradition.

We have also tried to take into account the interests of a variety of readers. For
example, the multiplicity theory for normal operators is contained in Sections 2.1
and 2.2. (it would be desirable but not necessary to include Section 1.1 as well),
whereas someone interested in Borel structures could read Chapter 3 separately.
Chapter 1 could be used as a bare-bones introduction to C *-algebras. Sections 2.1
and 2.3 together contain the basic structure theory for type I von Neumann
algebras, and are also largely independent of the rest of the book.

The level of exposition should be appropriate for a second year graduate student
who is familiar with the basic results of functional analysis, measure theory, and
Hilbert space. For example, we assume the reader knows the Hahn — Banach
theorem, Alaoglu’s theorem, the Krein—Milman theorem, the spectral theorem
for normal operators, and the elementary theory of commutative Banach algebras.
On the other hand, we have avoided making use of dimension theory and most of
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Preface

the more elaborate machinery of reduction theory (though we do use the.notation
for direct integrals in Sections 2.2 and 4.3). More regrettably, some topics have
been left out merely to keep down the size of the book; for example, applications to
the theory of unitary representations of locally compact groups are barely men-
tioned. To fill in these many gaps, the reader should consult the comprehensive
monographs of Dixmier [6, 7].

A preliminary version of this manuscript was finished in 1971, and during the
subsequent years was widely circulated in preprint form under the title
Representations of C*-algebras. The present book has been reorganized, and new
material has been added to correct what we felt were serious omissions in the
earlier version. It has been used as the basis for lectures in Berkeley and in Aarhus.

We are indebted to many colleagues and students who read the manuscript,
pointed out errors, and offered constructive criticism. Special thanks go to Cecelia
Bleecker, Larry Brown, Paul Chernoff, Ron Douglas, Dick Loebl, Donal
O’Donovan, Joan Plastiras, and Erling Stormer.

This subject has more than its share of colorless and obscure terminology. In
particular, one always has to choose between callinga C *.algebra GCR, type |, or
postliminal. The situation is no better in French: does postliminaire mean post-
preliminary? In this book we have reverted to Kaplansky’s original acronym,
simply because it takes less space to write. More sensibly, we have made use of
Halmos’ symbol o to signal the end of a proof.

vi
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Fundamentals

This chapter contains what we consider to be the essentials of non-
commutative C*-algebra theory. This is the material that anyone who wants
to work seriously with C*-algebras needs to know. The most tractable C*-
algebras are those that can be related to compact operators in a certain
specific way. These are the so-called GCR algebras, and they are introduced
in Section 1.5, after a rather extensive discussion of C*-algebras of compact
operators in Section 1.4.

Representations are first encountered in Section 1.3; they remain near
the center of discussion throughout the chapter, and indeed throughout the
remainder of the book (excepting Chapter 3).

1.1. Operators and C*-algebras

A C*-algebra of operators is a subset o of the algebra £ () of all bounded
operators on a Hilbert space 5, which is closed under all of the algebraic
operations on # () (addition, multiplication, multiplication by complex
scalars), is closed in the norm topology of #(5), and most importantly is
closed under the adjoint operation T — T* in Z(5¢). Every operator T on
M determines a C*-algebra C*(T), namely the smallest C*-algebra con-
taining both T and the identity. It is more or less evident that C*(T) is the
norm closure of all polynomials p(T, T*), where p(x, y) ranges over all
polynomials in the two free (i.e., noncommuting) variables x and y having
complex coefficients. However since T and T* do not generally commute,
these polynomials in T and T* are of little use in answering questions, and
in particular the above remark sheds no light on the structure of C*(T).
Nevertheless, C*(T) contains much information about T, and one could
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1. Fundamentals

view this book as a description of what that information is and how one goes
about extracting it.

We will say that two operators S and T (acting perhaps, on different
Hilbert spaces) are algebraically equivalent if there is a «-isomorphism (that
is, an isometric *-preserving isomorphism) of C*(S) onto C*(T) which carries
S into T. Note that this is more stringent than simply requiring that C*(S)
and C*(T) be +-isomorphic. We will see presently that two normal operators
are algebraically equivalent if and only if they have the same spectrum; thus
one may think of algebraically equivalent nonnormal operators as having
the same “spectrum” in some generalized sense, which will be made more
precise in Chapter 4.

We now collect a few generalities. A (general) C*-algebra is a Banach
algebra A having an involution « (that is, a conjugate-linear map of A4 into
itself satisfying x** = x and (xy)* = y*x*, x, y € A) which satisfies ||x*x|| =
||x||* for all x € A. It is very easy to see that a C*-algebra of operators on a
Hilbert space is a C*-algebra, and we will eventually prove a theorem of
Gelfand and Naimark which asserts the converse: every C*-algebra is iso-
metrically +-isomorphic with a C*-algebra of operators on a Hilbert space
(Theorem 1.7.3).

Let A be a commutative C*-algebra. Then in particular A4 is a commutative
Banach algebra, and therefore the set of all nonzero complex homomor-
phisms of 4 is a locally compact Hausdorff space in its usual topology. This
space will be called the spectrum of A, and it is written A. A standard result
asserts that 4 is compact iff A contains a multiplicative identity. Now the
Gelfand map is generally a homomorphism of A4 into the Banach algebra
C(A) of all continuous complex valued functions on A vanishing at co. In
this case, however, much more is true.

Theorem 1.1.1. The Gelfand map is an isometric -isomorphism of A onto C(A).

Here, the term +-isomorphism means that, in addition to the usual pro-
perties of an isomorphism, x* € 4 gets mapped into the complex conjugate
of the image of x. We will give the proof of this theorem for the case where
A contains an identity 1; the general case follows readily from this by the
process of adjoining an identity (Exercise 1.1.H).

First, let w € A. Then we claim w(x*) = w(x) for all x € A. This reduces
to proving that w(x) is real for all x = x* in A (since every x € 4 can be
written x = x, + ix,, with x; = x] € A). Therefore choose x = x* € 4, and
for every real number t define u, = ¢"* (for any element z € A4, €’ is defined
by the convergent power series ) .=, z"/n!, and the usual manipulations
show that &** = e*e” since z and w commute). By examining the power
series we see that u7 = e~ ** and hence /'y, = e *** = . Thus ||u|* =
|lusu|| = ||1]| = 1, and since the complex homomorphism w has norm 1 we
conclude exp t Re iw(x) = |e*™| = |w(4)| < 1, for all t € R. This can only
mean %e iw(x) = 0, and hence w(x) is real.

2



1.1. Operators and C*-Algebras

Now let y(x) denote the image of x in C(A4), i.e., y(x)(w) = w(x), w € 4.
Then we have just proved y(x*) = y(x), and we now claim |[y(x)|| = ||x||.
Indeed the left side is the spectral radius of x which, by the Gelfand-Mazur
theorem, is lim, ||x"||'/". But if x = x* then we have Ix||2 = |lx*x|| = [|x*]I;
replacing x with x2 gives ||x||* = ||x?||* = ||x*||, and so on inductively, giving
Ix|l*” = ||x*"|l, n = 1. This proves ||x|| = lim, [|x"||'™ if x = x*, and the
case of general x reduces to this by the trick ||y(x)||* = ||y(x)y(x)|| =
|ly(x*x)|| = ||x*x]|| = ||x||>, applying the above to the self-adjoint element x"x.

Thus y is an isometric +-isomorphism of A onto a closed self-adjoint
subalgebra of C(A4) containing 1; since y(A4) always separates points, the
proof is completed by an application of the Stone—Weierstrass theorem. O

Anelement x ofa C*-algebra is called normal if x*x = xx*. Note that this is
equivalent to saying that the sub C*-algebra generated by x is commutative.

Corollary. If x is a normal element of a C*-algebra with identity, then the
norm of x equals its spectral radius.

Proor. Consider x to be an element of the commutative C*-algebra it
generates (together with the identity). Then the assertion follows from the
fact that the Gelfand map is an isometry. O

Theorem 1.1.1 is sometimes called the abstract spectral theorem, since it
provides the basis for a powerful functional calculus in C*-algebras. In order
to discuss this, let us first recall that if B is a Banach subalgebra of a Banach
algebra A with identity 1, such that 1€ B, then an element x in B has a spec-
trum sp,4(x) relative to 4 as well as a spectrum spg(x) relative to B, and in
general one has sp,(x) < spg(x). Of course, the inclusion is often proper.
But if 4 is a C*-algebra and B is a C*-subalgebra, then the two spectra must
be the same. To indicate why this is so, we will show that if x € B is invertible
in A, then x~! belongs to B (a moment’s thought shows that the assertion
reduces to this). For that, note that x* is invertible, and since the element
(x*x)~'x* is clearly a left inverse for x, we must have x ! = (x"x)™'x". So
to prove that x ! € B, it suffices to show that (x*x) ™' € B. Actually, we will
show that x*x is invertible in the still smaller C*-algebra B, generated by
x*x and e. For since B, is commutative, 1.1.1 implies that the spectrum
(relative to B,) of the self-adjoint element x*x is real, and in particular this
relative spectrum is its own boundary, considered as a subset of the complex
plane. By the spectral permanence theorem ([23], p. 33), the latter coincides
with sp 4(x*x). Because O ¢ sp4(x*x), we conclude that x*x is invertible in B,.

These remarks show in particular that it is unambiguous to speak of the
spectrum of an operator T on a Hilbert space .7, so long as it is taken
relative to a C*-algebra. Thus, the spectrum of 7 in the traditional sense
(i.e., relative to 7(.#') is the same as the spectrum of T relative to the
subalgebra C*(T). They also show that the spectrum of a self-adjoint element
of an arbitrary C*-algebra (commutative or not) is always real.



1. Fundamentals

We can now deduce the functional calculus for normal elements of C*-
algebras. Fix such an element x in a C*-algebra with identity, and let B be
the C*-algebra generated by x and e. Define a map of B into C as follows:
@ — w(x). This is continuous and 1—1, thus since B is compact it is a
homeomorphism of B onto its range. By the preceding discussion the range
of this map is sp,(x) = sp(x). So this map induces, by composition, an
isometric *-isomorphism of C(sp(x)) onto B. It is customary to write the
image of a function f € C(sp(x)) under this isomorphism as f(x). Note that
the formula suggested by this notation reduces to the expected thing when f
is a polynomial in { and T; for example, if f({) = {*T then f(x) = x2x*. This
process of “applying” continuous functions on sp(x) to x is called the func-
tional calculus.

In particular, when T is a normal operator on a Hilbert space we have
defined expressions of the form f(T), f € C(sp(T)). In this concrete setting
one can even extend the functional calculus to arbitrary bounded (or even
unbounded) Borel functions defined on sp(T), but we shall have no particular
need for that in this book. It is now a simple matter to prove:

Theorem 1.1.2. Let S and T be normal operators. Then S and T are algebra-
ically equivalent if, and only if, they have the same spectrum.

PrOOF. Assume first that sp(S) = sp(T). Then by the above we have
l/S)|| = sup{|f(2)|:z € sp(S)} = ||A(T)||, for every continuous function f
on sp(S). This shows that the map ¢:f(S) — f(T), f € C(sp(S)), is an iso-
metric *-isomorphism of C*(S) on C*(T) which carries S to T. Conversely,
if such a ¢ exists, then the spectrum of S relative to C*(S) must equal the
spectrum of ¢(S) = T relative to C*(T). By the preceding remarks, this
implies sp(S) = sp(7). O

EXERCISES

1.1.A. Let e be an element of a C*-algebra which satisfies ex = x for every x € A. Show
that e is a unit, e = €, and ||e|| = 1.

1.1.B. Let 4 be a Banach algebra having an involution x — x* which satisfies ||x||> <
||x*x|| for every x. Show that 4 is a C*-algebra.

1.1.C. (Mapping theorem.) Let x be a self-adjoint element of a C*-algebra with unit
and let f € C(sp(x)). Show that the spectrum of f(x) is f(sp(x)).

1.1.D. Let A be the algebra of all continuous complex-valued functions, defined on the
closed disc D = {|z| < 1} in the complex plane, which are analytic in the
interior of D.

a. Show that A4 is a commutative Banach algebra with unit, relative to the
norm || f|| = supy, <, |(2)].

b. Show that f*(z) = f(Z) defines an isometric involution in A.

c. Show that not every complex homomorphism @ of A satisfies w(f*) =

w(f).



1.2. Two Density Theorems

1.1.E. Let A be a C*-algebra without unit. Show that, for every x in 4:
Xl = sup[lxy]l
Il <

1.1.F. Let S and T be normal operators on Hilbert spaces s# and ). Show that C*(S)
is «-isomorphic to C*(T) iff sp(S) is homeomorphic to sp(T).

1.1.G. Let f:R — C be a continuous function and let A be a C*-algebra with unit.
Show that the mapping x — f(x) is a continuous function from {x € A:x = x*}
into A.

1.1.H. (Exercise on adjoining a unit.) Let 4 be a C*-algebra without unit, and for each x
in A4 let L, be the linear operator on A defined by y +— xy. Let B be the set of all
operators on A of the form A1 + L,, 1€ C, x € A.

Show that B is a C*-algebra with unit relative to the operator norm and the
involution (41 + L,)* = A1 + L,., and that x + L, is an isometric s-isomor-
phism of A onto a closed ideal in B of codimension 1. [Hint: use 1.1.B.]

1.1.1. Discuss briefly how the functional calculus (for self-adjoint elements) must be
modified for C*-algebras with no unit. In particular, explain why sin x makes
sense for every self-adjoint element x but cos x does not. [Hint: use 1.1.H to
define the spectrum of an element in a non-unital C*-algebra.]

1.2. Two Density Theorems

There are two technical results which are extremely useful in dealing with
«-algebras of operators. We will discuss these theorems in this section and
draw out a few applications.

The null space of a set & = £ () of operators is the closed subspace of
all vectors & € ¥ such that S¢ = Oforall S € &. The commutant of & (written
&) is the family of operators which commute with each element of &. Note
that %’ is always closed under the algebraic operations, contains the identity
operator, and is closed in the weak operator topology. Moreover, if & is
self-adjoint, that is & = %" is closed under the +-operation, then so is &".
Now it is evident that & is always contained in %", but even when % is a
weakly closed algebra containing the identity the inclusion may be proper.
According to the following celebrated theorem of von Neumann, however,
one has ¥ = " if in addition & is self-adjoint. '

Theorem 1.2.1 Double commutant theorem. Let o/ be a self-adjoint algebra
of operators which has trivial null space. Then s is dense in " in both
the strong and the weak operator topologies.

PrOOF. Let o/, and &/, denote the weak and strong closures of .«/. Then
clearly o/, < &, = /", and it suffices to show that each operator T € /"
can be strongly approximated by operators in &/ ; that is, for every ¢ > 0,
every n = 1,2,..., and every choice of n vectors ¢, &,, ..., &, € ), there
is an operator S € o such that Y 1_, || T, — S&||* < €2



1. Fundamentals

Consider first the case n = 1, and let P be the projection onto the closed
subspace [#¢,]. Note first that P commutes with «. Indeed the range of
P is invariant under < ; since o/ = /*, so is the range of P = I — P, and
this implies P € o'. Next observe that ¢, € [&/¢&,], or equivalently, P+, = 0.
Forif S € of then SPL¢, = PS¢, = 0 (because S¢, € [«#¢,] and P* is zero
on [&/&,]). Since & has trivial null space we conclude P&, = 0. Finally,
since T must commute with P € &’ it must leave the range of P invariant,
and thus T¢, € range P = [«#¢,]. This means we can find S € o such that
|TE, — S&|| < &, as required.

Now the case of general n > 2 is reduced to the above by the following
device. Fix n, and let )¢, = # @ - - - @ H be the direct sum of n copies of
the underlying Hilbert space 5. Choose ¢,, ..., £, € ) and define n € ),
byn =¢, @& @ - @&, Let o, = L(H,) be the +-algebra of all opera-
tors of the form {S® S ® - - - @ S:S € o }. Thus each element of &, can
be expressed as a diagonal n x n operator matrix

S 0

0 S
S € o/. The reader can see by a straightforward calculation that an n x n
operator matrix (T;), T;; € £ (), commutes with <, iff each entry T|;
belongs to &/'. This gives a representation for <, as operator matrices, and
now a similar calculation shows that (T';;) commutes with o/, iff (T';) has
the form

T 0
T

0 T
with T € o”. Thus we have a representation for &,. Now choose T € /"
andletT, = T@® T @ - @ T.Then T, € &, so that the argument already
given shows that T, € [#,n], thus we can find § € & such that S, is within

¢ of T,n in the norm of #,. In other words, Y 5., ||T& — S&|* < &%, as
required. O

By definition, a von Neumann algebra is a self-adjoint subalgebra # of
(o) which contains the identity and is closed in the weak operator
topology. Note that 1.2.1. asserts that such an # satisfies # = #”, and this
gives a convenient criterion for an operator T to belong to #: one simply
checks to see if T commutes with 2'. As an illustration of this, let us consider
the polar decomposition. That is, let T e £ (), and let |T| denote the
positive square root of the positive operator T* T (via the functional calculus).
Then |T|e C*(T*T), and in particular |T| belongs to the von Neumann

6



1.2. Two Density Theorems

algebra generated by T. We want to define a certain operator U such that
U|T| = T. Note first that for all £ = J# we have |||T|¢||* = (|T|¢, |T|¢) =
(|T)?¢, &) = (T*T¢E, &) = (TE, Té) = ||TE||*. Therefore the map U:|T|¢é — T¢,
¢ € A, extends uniquely to a linear isometry of the closed range of | T| onto
the closed range of T. Extend U to a bounded operator on »# by putting
U = 0 on the orthogonal complement of | T|5#. Then U is a partial isometry
(i.e., U*U is a projection) whose initial space is [|T|#] and which satisfies
U|T| = T. It is easy to see that these properties determine U uniquely, and
the above formula relating U and |T| to T is called the polar decomposition
of T. Now we want to show that U belongs to the von Neumann algebra
generated by T. By 1.2.1, it suffices to show that U commutes with every
operator Z which commutes with both T and T*. Now in particular Z com-
mutes with the self-adjoint operator |T|, and therefore Z leaves both |T|#
and (|T|#)* invariant. In particular Z leaves the null space of U(=(|T|#')*)
invariant and so ZU = UZ = 0 on the null space of U. Thus it suffices to
show that ZU = UZ on every vector of the form |T|¢, & € s#. But ZU|T|¢ =
ZT¢ = TZ¢, while UZ|T|E = U|T|ZE = TZ¢E, and we are done. This
proves the following

Corollary. Let T = U|T| be the polar decomposition of an operator T € £ ().
Then both factors U and |T| belong to the von Neumann algebra generated
by T.

The following density theorem is a special case of a theorem of Kaplansky
[16]. For a set of operators & we will write ball & for the closed unit ball
in¥, ball ¥ = {Se Z:||S|| < 1}.

Theorem 1.2.2. Let o/ be a self-adjoint algebra of operators and let </ be
the closure of o/ in the strong operator topology. Then every self-adjoint
element in ball &/ can be strongly approximated by self-adjoint elements
in ball «/.

ProoF. Note first that every self-adjoint element in the unit ball of the norm
closure of &/ can be norm-approximated by self-adjoint elements in ball .«/.
Thus we can assume ./ is norm closed.

Now since the +-operation is not strongly continuous, we cannot im-
mediately assert that the strong closure of the convex set & of self-adjoint
elements of o contains {T € &/,: T = T*}. But its weak closure does (because
if a net S, converges to T = T* strongly, then the real parts of S, converge
weakly to T), and moreover since the weak and strong operator topologies
have the same continuous linear functionals (Exercise 1.2.E) they must also
have the same closed convex sets. Thus we see in this way that the strong
closure of % contains the self-adjoint elements of .<7;.

Now consider the continuous functions f:R — [—1, +1] and g:[ -1,
+1] — R defined by f(x) = 2x(1 + x?)"! and g(y) = y(1 + /T — y*)~ L.
Then we have f o g(y) = y, for all ye [—1, +1], and clearly |f(x)| < I for
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all x e R. We claim that the map S+ f(S) is strongly continuous on the set
of all self-adjoint operators on . Granting that for a moment, note that
1.2.2 follows. For if T = T* € &, is such that ||T|| < 1, then S, = g(T) is
a self-adjoint element of &, so that by the preceding paragraph there is a
net S, of self-adjoint elements of &/ which converges strongly to S,. Hence
£(S,) = f(So) strongly. Now f(S,) is self-adjoint, belongs to o/ (because o
is norm closed), and has norm <1 since | f | < 1 on R. On the other hand,
fog(y) =y on [—1,1] implies f(So) = f g(T) = T, because ||T|| < 1,
and this proves T is the strong limit of self-adjoint elements of ball /.

Finally, the fact that f(S) = 2S(I + $?)! is strongly continuous follows
after a moments reflection upon the operator identity

2[£(S) — f(So)] = 4(1 + §*)7HS = So)(1 + S§)™' — S(S)S — So)f(So),
considering S tending strongly to S, O

Kaplansky also proved that ball & is strongly dense 11 ball &/,. That is
not obvious from what we have said, but a simple trick using 2 x 2 operator
matrices allows one to deduce that from 1.2.2 (Exercise 1.2.D).

Corollary. Let o be a self-adjoint algebra of operators on a separable Hilbert
space X. Then for every operator T in the strong closure of o/, there is a
sequence T, € s/ such that T, — T in the strong operator topology.

ProOF. We can assume ||T|| < 1, and since we can argue separately with
the real and imaginary parts of T, we can assume T = T*. Let {,, {,,...be
a countable dense set in ). By 1.2.2, foreach n > 1, we can find a self-adjoint
element T, in & such that ||T,|| < 1 and ||T,& — T&|| < 1/n for k =
1,2,...,n Thus T, — T strongly on the dense set {{,, {,, ...} of &, and
since || T,|| < 1, the corollary follows. O

This corollary shows that in the separable case, the strong closure of a
C*-algebra of operators can be achieved by adjoining to the algebra all
limits of its strongly convergent sequences.

A Cr-algebra is separable if it has countable norm-dense subset. A sepa-
rable C*-algebra is obviously countably generated (a countable dense set
clearly generates), and the reader can easily verify the converse: every
countably generated C*-algebra is separable. We conclude this section by
pointing out a useful relation between separably-acting von Neumann
algebras and separable C*-algebras.

Let o be a Hilbert space. Then it is well known that the closed unit ball
in £ () is compact in the relative weak operator topology ([7], p. 34).
Moreover, note that if J# is separable then ball £ (5¢) is a compact metric
space. Indeed, if uy, u,, . . . is a countable dense set of unit vectors in ) then
the function

d(S, T) = Z 2_i_j'(su‘ - Tul', ul)l

i,j=1



