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Preface

The field of statistical signal processing has contributed a variety of ideas
and techniques to the field of image processing during its roughly forty years
of existence. Like other areas of signal processing, image processing has incor-
porated probability, random processes, systems, and transforms into its basic
toolbox of approaches and techniques. During recent years an increasingly
large role has been played by a particular collection of techniques that were
little used during the formative years of image processing: Markov random
fields, a generalization of the idea of Markov chains to the two or three dimen-
sional context of images. Although promoted as early as the 1970s by the great
Russian information theorist Roland Dobrushin as an excellent model for theo-
retical studies of images, the ideas were slow to spread to the engineering liter-
ature and applications. Even more recently the ideas of hidden Markov models
developed with such success in speech processing applications for coding and
recognition have been extended to the two and three dimensional context of
images, allowing a rich new class of models for image processing applications
such as compression, coding, classification, recognition, segmentation, and a
variety of forms of image analysis. Some of these methods have extended ideas
from one dimensional signals such as speech to two and more dimensions by
artificially ordering pixel indexes in a manner analogous to the natural order-
ing of time for a one dimensional signal, forcing two or three dimensional
signals to be spatially “causal” signals. Models and methods not imposing this
restraint have required more effort, but the profusion and success of such meth-
ods demonstrates that they are coming into their own in terms of both theory
and implementation. This book is an effort to provide a survey and compara-
tive development of an exciting and rapidly evolving field of multidimensional
Markov and hidden Markov random fields.

CHEE SUN WON AND ROBERT M. GRAY
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Chapter 1

INTRODUCTION

1.1  Notation
An image will be modeled as a random field : Y = {Y; : s € Q}, where

m Q={(:,7)]0<i<N; —1,0<j < Ny— 1} is anindex set, a set of site
indices on a 2-D discrete /N7 x N rectangular integer lattice as depicted in
Figure 1.1.

» For each lattice point or pixel s = (i,7) € §, Y is a real-valued random
variable. For convenience we will use any of the notations Y, Yj;, or Y; ;
to denote the random variable at a location s = (z,7) € Q.

» The random field Y is characterized by a joint probability distribution Py,
which in turn may be characterized by an associated parameter set fy.
When the alphabet is discrete, the joint distribution wi]] be completely de-
scribed by a joint probability mass function py (y) = Py ({y}) = P(Y =

y) for which

P(F) = P(Y € F)= 3 pv()

When the alphabet is continuous, we assume the existence of a joint prob-
ability density function (pdf) py for which

Py(F)=P(Y € F) = /F dymylu)

for all Borel sets F'. Whether lower case p corresponds to a pmf or pdf
should be clear from context.

A random field Y is simply a random object with a two dimensional index
set. We will use the symbol Y to correspond to an observable image in the
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Figure 1.1.  Site convention for 2-D rectangular image lattice, where s = (i, j) € €.

sense that its sample values will be directly seen or measured. It will often be
the case that the random variables Y; will take on sample values or realizations
ys from a common finite set of integers {0,1,2,--- , Ly — 1}.! For example,
for a graylevel image with 8-bit quantization, we have Ly = 256 and y, €
{0,1,2,---, Ly — 1}. Depending on the application at hand, however, y, may
represent some feature values extracted from the graylevels such as the discrete
cosine transform (DCT) or discrete wavelet transform (DWT) coefficients.

Let the range space or alphabet of the random variables Y be Ay, and the
set of all possible realizations of Y be the Cartesian product Ay = [[,., Ay,.
We will assume that all of the Ay, are identical.

We also consider a second random field X == {X; : s € Q}, which is
not observable but which may represent a hidden state (i.e., which is not di-
rectly observable and which must be estimated based on the observed Y'). The
random field X is used to represent unknown and unobservable labels cor-
responding Y. For example, X, might identify a type or class to which Y
belongs or the observation Y might be a noisy or distorted version of X. If X
is discrete, it indicates a segmentation of the image Y into regions with com-
mon values of X and the realization = of X takes one of L x class labels, i.e.
zs € {0,1,--- ,Lx — 1}. When X is continuous, it may be interpreted as a
denoised or enhanced version of Y.

'We always use upper case letters for random variables and lower case letters for their values (or realiza-
tions).
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As with the random field Y, the random field X is similarly described by a
range space or alphabet A x, a distribution Py, and a parameter set 6 x. When
the alphabet is discrete, the joint distribution will be completely described by
a joint probability mass function px (z); = € Ax. When it is continuous, the
joint distribution will be completely described by a probability density function
px(z); = € Ax.

In order to relate random fields X and Y we also require the existence of
an underlying joint probability distribution Px y which implies the induced
conditional distributions Pxy and Py|x and the “marginal” distributions Px
and Py for the individual random fields. A general goal will be to find an
“optimal” value z* for X based on an observation Y = y.

We will usually focus on discrete random variables and hence pmfs will be
emphasized and we will write sums rather than integrals and treat the proba-
bility functions as actual probabilities, e.g., px|y(z|y) = P(X = z|Y = y).
Our aim, however, is to simplify the development and not to restrict consider-
ation to discrete-valued random fields. The formulas extend to the continuous
case by the usual method of replacing sums by integrals and the densities can
be interpreted as approximate probabilities by multiplying them by a differen-
tial volume. In order to simplify notation and the effort required for handling
continuous, discrete, and mixed cases, we adopt the following notation: P(x)
will represent the pmf P(X = z) = px(z) in the discrete case and the pdf
px(z) in the continuous case. This employs the common abuse of notation
of letting the independent variable imply the random object in question. P(y)
will similarly represent the pmf or pdf as appropriate for Y. Conditional dis-
tributions will be similarly abbreviated with P(z|y) representing a conditional
pdf or pmf px|y(z|y) and similarly for P(y|z). Usually we will implicitly
assume the discrete case and use sums, but in continuous examples such as the
Gaussian examples, the obvious replacement of sums by integrals and proba-
bility mass functions by density functions should be made. When necessary
for clarity, we will occasionaly use the longer notation, e.g., P(X = z|Y = y)
for a conditional pmf.

1.2 A Brief History of MRF-Based Image Modeling

Early work on Markov random fields (MRFs) and Gibbs random field (GRFs)
began in the 1950’s [179], 1960’s [1, 58], and 1970’s [13, 131, 189]. These
seminal works concentrated primarily on the Markovian and Gibbsian models
on 2-D lattice structures. Since 1970, MRF models have been applied to im-
age spaces for image segmentation and restoration problems (see for example
[14, 50, 72]). These works exploited the analogy between very large spatial
stochastic systems of digital images and the lattice-based systems of statisti-
cal mechanics. It is not surprising that most of their answers to the following
important questions are based on statistical mechanics:
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(i) How are the contextual relationships among pixel labels established in a
noncausal way?

(i1) With the stochastic models defined in (i), how is a segmentation or restora-
tion problem formulated as an optimization process with a well defined cost
function?

(iii) How is the optimal solution defined in (ii) obtained?

For the first question, the obvious obstacle is the extension of causal 1-
dimensional (1-D) signal processing techniques to noncausal 2-dimensional
(2-D) spatial data. Since there is no natural definition for past and future for
pixels in the spatial domain, a direct application of the 1-D Markov chain (MC)
model to 2-D image data is not possible. This led researchers to introduce a
2-D noncausal Markovian property, which is defined by a neighborhood sys-
tem. Although the MRF model allows us to represent the spatial dependence
of the class label field in a noncausal way, its local characteristics expressed
by noncausal neighbors creates another problem. Specifically, unlike the 1-D
MC, the joint probability of the noncausal MRF is not factored into the local
characteristics. This implies that we need a consistent way of constructing the
joint probability using the local characteristics. Fortunately, the joint proba-
bility can be obtained alternatively by using the Hammersley-Clifford theorem
[13]. The theorem says that any MRF is equivalent to a GRF. Note that the
MREF is based on the conditional probability, whereas the GRF is defined by a
joint distribution. Therefore, the MRF-GRF equivalence theorem allows us to
represent the joint distribution of X in terms of local conditional probabilities
and vice versa. Since we have an explicit expression for the joint probability
as well as the conditional probability, the noncausal random field is complete
and is ready to use.

The answer to the second and third questions adopted in the earlier works
is the Bayesian classifier, specifically, the maximum a posteriori (MAP) esti-
mation criterion. Given the observed image random field Y = y, the MAP
criterion seeks a labeling X = z* which maximizes the conditional probabil-
ity function px|y (x|y) for all possible realizations = of X In the case where
the alphabet of X is discrete, this corresponds to maximizing the probability
P(z|y) and minimizing the probability of an error or misclassification. Follow-
ing Bayes’ rule, maximizing P(z|y) is equivalent to maximizing P(y|z)P(z).
Finding the optimal class label *(y) = argmax, P(y|z)P(z) by examining
all possible class label configurations in Ax is computationally prohibitive.
Instead, in the earlier work, the following assumptions were made to simplify
MAP optimization.

(i) Given arealization z = {z, s € Q} of the class label field X, the observa-
tions Y = {Y;, s € 1} are assumed to be of the form Yy = X+ W, Vs €
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(2, where W' is a random field that is independent of X and is indepen-
dent and identically distributed (iid). In particular, given X = z the Y are
conditionally independent of each other.

(i) The random field X is assumed to obey a noncausal MRF property.

Using assumption (i), the MAP criterion can be expressed as

z*(y) = argmaxP(z|y)

arg;naxP(ylx)P(z)

Il

argmax |P(2) [T P(Ys = wslX, = 7))

SEN

Note that the noncausality of the random field X makes it difficult to arrange
the unobservable class label process X in an ordered sequence. As a result, Py
can not be decomposed into (first-order) Markov transition probabilities. In-
stead, Geman and Geman [72] introduced an alternative stochastic relaxation
method called simulated annealing (SA) to obtain the optimal class label z*
of the MAP criterion P(z|y). The SA method is based on a Gibbs sampler,
which generates a sequence of samples of the class labels from the Gibbs dis-
tribution of P(zx|y). More specifically, starting from an arbitrary realization
x(0), its class label of each pixel is repeatedly updated by the local conditional
probability of P(z|y). Here, since P(z|y) has a Gibbs distribution, accord-
ing to the MRF-GRF equivalence theorem, the local conditional probability
of P(z|y) satisfies the Markov property and can be expressed as a function
of clique potentials of the neighbors. Thus, the local conditional probability
is computationally feasible. It has been proven in [72] that in the limit of an
infinite number of pixel visits and updates, the updated class label converges
to a sample from the Gibbs distribution regardless of the choice of the starting
class label field z(0). Moreover, by introducing a proper cooling schedule to
the energy function during the update, the Gibbs sampler converges to a max-
imum state of the realization, which corresponds to a MAP solution. In other
words, with a proper cooling schedule, the iterative local updates overcome
local maxima and eventually converge to a globally optimal realization z* of
the label field. Note that the nature of the SA algorithm is iterative, which is
usually computationally expensive.

When all parameter values associated with the random field models are
known a priori, the SA and its deterministic relaxation algorithms converge
rapidly and yield an acceptable result in a finite number of iterations. How-
ever, when it comes to a realistic situation, the algorithm gets extremely com-
plex. That is, when the parameter values are not known, it needs an additional
parameter estimation step. Here, we need the known class labels to estimate
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the model parameter values. At the same time, the estimated model parameter
values should be available for the determination of class labels. This “chicken-
and-egg” problem led people to seek simultaneous or alternate methods for
parameter estimations and class label updates [14, 110, 185, 197], which are
computationally quite expensive.

The pixel-wise conditional independence assumption (ie., ¥y = Xs +
W, ¥Vt € Q, with an iid assumption for W) also limits real applications.
For most real images, the observed image data are correlated with their neigh-
boring image data given the underlying class label. In this case, the random
variable Y for observed image data may be modeled by a linear combination
of the neighboring image data as well as X and W,. Then, more parame-
ters are needed to represent the contextual relationship among the extended
neighbors for observed image data. This in turn increases the computational
complexity because of the increased number of model parameters.

In summary, conventional MAP estimation techniques with a simulated an-
nealing paradigm basically rely on iterative and pixel-wise local updates of the
class labels. This structure may not be suitable for some realistic problems.
First, the iterative nature of the techniques often requires high computational
cost. It becomes even worse when the model parameter values need to be esti-
mated during the iterative class label updates. Moreover, if there exist correla-
tions among the observed image data, then the number of model parameters to
be estimated increases. Natural images often contain texture regions in which
the neighboring image data are highly correlated.

A great deal of effort has been expended to overcome these problems dur-
ing the past decade. The following three approaches have shown particular
promise:

(i) Multiresolution Markov random fields [20, 21, 31, 38,109, 111, 117, 129]
(ii) Block-based approaches [114, 186, 187]
(iii) Causal Markov chain modeling [93, 103, 108, 114, 117, 135, 150].

Multiresolution extensions of the MRF model can be accomplished by decom-
posing the image data into different frequency components and scales, enabling
the exploitation of image features in various scales. However, new issues arise
from the multiresolution approaches such as the estimation of inter-model and
intra-model parameters and the Markovianity between consecutive resolution
levels and among the spatial data at a specific level. An alternative approach
to the multiresolution methods is to deal with a group of pixels (i.e., an image
block) together as a super-pixel. Long range correlation in the image data can
be effectively treated by extracting the feature within the image block and con-
sidering its continuity among the neighboring image blocks, Finally, adopting
causal Markov chain modeling, it is expected that well developed estimation



