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Preface

It is our great pleasure to present the proceedings of the European Conference on
Wireless Sensor Networks 2010 (EWSN 2010).

As the field of wireless sensor networks matures, new design concepts, experimen-
tal and theoretical findings, and applications have continued to emerge at a rapid pace.
As one of the leading international conferences in this area, EWSN has played a sub-
stantial role in the dissemination of innovative research ideas from researchers all over
the globe.

EWSN 2010 "was organized by the University of Coimbra, Portugal, during
February 17-19, 2010 and it was the seventh meeting in this series. Previous events
were held in Berlin (Germany) in 2004, Istanbul (Turkey) in 2005, Zurich (Switzer-
land) in 2006, Delft (The Netherlands) in 2007, and Cork (Ireland) in 2009.

A high-quality selection of papers made up EWSN 2010. Based on the reviews and
the recommendations from the four live TPC discussions, we selected a total of 21
papers from 109 submissions (19.26% acceptance rate) for EWSN 2010. Topics of
interest included hardware design and implementation, operating systems and soft-
ware, middleware and macroprogramming, communication and network protocols,
information and signal processing, fundamental theoretical limits and algorithms,
prototypes, field experiments, testbeds, novel applications, including urban sensing,
security and fault-tolerance.

Putting together EWSN 2010 was a team effort. We would like to thank the Pro-
gram Committee members, the reviewers, our sponsors, all authors, and the Organiz-
ing Committee for their respective contributions.

We believe the conference program was interesting and that it provided participants
with a very valuable opportunity to share ideas with other researchers and practitio-
ners strongly involved in wireless sensor networks.

February 2010 Bhaskar Krishnamachari
Fernando Boavida
Jorge Sa Silva
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Radio Interferometric Angle of Arrival
Estimation

Isaac Amundson, Janos Sallai, Xenofon Koutsoukos, and Akos Ledeczi

Institute for Software Integrated Systems (ISIS)
Department of Electrical Engineering and Computer Science
Vanderbilt University
Nashville, TN 37235, USA
isaac.amundson@vanderbilt.edu

Abstract. Several localization algorithms exist for wireless sensor net-
works that use angle of arrival measurements to estimate node position.
However, there are limited options for actually obtaining the angle of
arrival using resource-constrained devices. In this paper, we describe a
radio interferometric technique for determining bearings from an anchor
node to any number of target nodes at unknown positions. The underly-
ing idea is to group three of the four nodes that participate in a typical
radio interferometric measurement together to form an antenna array.
Two of the nodes transmit pure sinusoids at close frequencies that in-
terfere to generate a low-frequency beat signal. The phase difference of
the measured signal between the third array node and the target node
constrains the position of the latter to a hyperbola. The bearing of the
node can be estimated by the asymptote of the hyperbola. The bearing
estimation is carried out by the node itself, hence the method is dis-
tributed, scalable and fast. Furthermore, this technique does not require
modification of the mote hardware because it relies only on the radio.
Experimental results demonstrate that our approach can estimate node
bearings with an accuracy of approximately 3° in 0.5 sec.

1 Introduction

Spatial coordination in wireless sensor networks (WSNs) has received a lot of
attention in recent years. In typical solutions, one or more nodes emit a signal,
and some property of that signal (e.g. angle of arrival (AOA), time of arrival
(TOA), received signal strength (RSS), etc.) is measured and used to derive
bearing or range. Angulation or lateration techniques can then respectively be
used to estimate a node’s position.

Although several techniques exist for determining node position based on
bearing information [1], [2], [3], [4], [5], there are few options for actually mea-
suring signal AOA in WSNs. Currently available methods for bearing estimation
require a heavy-weight infrastructure [6], rotating hardware [7], [8], directional
antennas [9], and/or expensive and sophisticated sensors [10]. Furthermore, such
techniques typically require participating nodes to be stationary for extended pe-
riods of time. These constraints are often undesirable for WSN deployments, in

J. Sa Silva, B. Krishnamachari, and F. Boavida (Eds.): EWSN 2010, LNCS 5970, pp. 1-16, 2010.
(© Springer-Verlag Berlin Heidelberg 2010



2 I. Amundson et al.

which node size and cost must be kept to a minimum. An AOA approach that
does not require additional hardware, runs on the nodes themselves, and is fast
enough to support tracking in addition to static localization would be a major
step forward.

In this paper, we propose a novel AOA approach for WSNs that uses radio
interferometry [11]. The basic idea is to group together three of the four nodes in-
volved in a typical radio interferometric measurement to form an antenna array.
which acts as an anchor node. Two transmitters and one receiver are arranged
in such a manner that their antennas are mutually orthogonal to minimize par-
asitic antenna effects (see Figure 1.) The measured phase difference between the
receiver in the array and a target node constrains the location of the latter to a
hyperbola. The bearing of the target node can then be estimated by computing
the angle of the hyperbola asymptote, assuming the target node is not too close
to the array.

Fig. 1. Antenna array implementation using three XSM motes

We present several new contributions for estimating the angle of arrival in
wireless sensor networks.

1. We describe an RF-based technique for determining target-node bearing.

2. We provide a detailed analysis that shows our bearing estimation algorithm
is robust to measurement noise and approximation error.

3. We design a real-world implementation using COTS sensor nodes, in which
bearing estimation is performed entirely on the resource-constrained motes.

4. We present experimental results that show our approach can rapidly and
accurately estimate node bearing.

The remainder of this paper is organized as follows. In Section 2, we discuss
other angle of arrival techniques for WSNs. Section 3 describes our proposed
system, followed by an error analysis in Section 4. In Section 5, we describe our
implementation on a real-world WSN platform. In Section 6, we evaluate our
system based on experimental results. Section 7 concludes.
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2 Related Work

The RF method we use for determining AOA is based on radio interferometry. The
Radio Interferometric Positioning System (RIPS) provides accurate RF-based
localization in WSNs [11]. The main idea is that the resource-constrained nodes
cannot sample a pure RF signal fast enough, but can process the lower-frequency
envelope of the beat signal that results from the interference of two high-frequency
signals. The difference in signal phase measured by two other nodes is a linear
combination of the distances between the transmitters and receivers, modulo the
wavelength, and can be used for localizing all participating nodes by solving an
optimization problem. Although RIPS has centimeter-accuracy and can support
inter-node distances of greater than twice the communication range, it requires
centralized processing, suffers from high latency, and involves sampling at several
frequencies.

A broad spectrum of acoustic beamforming techniques have been proposed to
find the angle of incidence of a signal at an array of sensors. The most common
techniques include delay-and-sum beamforming, Capon beamforming [12], MU-
SIC [13], ESPRIT [14] and min-norm [15] algorithms. Since the time of flight
of the signal from the source to sensors in the array varies based on their pair-
wise distances, sensors receive the signal with different phases. While all of these
methods compute the bearing of the source from the data streams sampled at
the individual sensors, they differ greatly with respect to their angular resolu-
tion as well as their computational requirements. In WSNs, angular resolution
is typically within 10° [16].

The Cricket Compass [17] is a device which uses ultrasound to determine ori-
entation with respect to a number of ceiling-mounted beacons. Two receivers are
mounted a few centimeters apart on a portable device, and the phase difference
of the ultrasonic signal is measured to determine bearing. Although both the
Cricket Compass and our approach measure signal phase difference to derive
AOA, the two systems use different hardware, signal modalities, phase disam-
biguation techniques, and bearing derivation algorithms. The Cricket Compass
has an accuracy of between 3° and 5°, depending on the orientation of the
compass.

Angle of arrival can be used in different ways for spatial coordination. Tri-
angulation, for example, is the process of determining the position of an object
from the bearings of known reference positions. Two such reference positions (or
three non-collinear ones in degenerate cases) are enough to localize any number of
nodes within range. In [2], a method is given to determine position based on the
angular separation (the difference in bearings) between beacons. Other angle of
arrival positioning approaches have been developed, including multiangulation
using subspace methods [4], anchor bearing propagation [1], and semidefinite
programming [3]. Bearing estimates can also be useful when anchor positions
are unknown. In [18] and [19], mobile robot navigation methods are presented
for arriving at a target position by only observing angular separation between
two pairs of landmarks.
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Fig. 2. Array containing a master node (M) and two assistant nodes (A, Az). A target
node (R) computes its bearing (/) from the array.

3 System Overview

Radio Interferometric Measurements. Our system consists of a station-
ary antenna array and cooperating wireless sensor nodes at unknown positions.
We assume that the position of the midpoint of the array is known, as well
as the distance between the antennas in the array. The array contains three
nodes, a master (M) and two assistants (A1, Az), as shown in Figure 2. At a
predetermined time, the master, M, and one of the assistants, A;, transmit a
pure sinusoidal signal at slightly different frequencies, which interfere to create a
low-frequency beat signal whose phase is measured by the other assistant in the
array, Ao, and a receiver node, R, at an unknown position. Such a measurement
is termed a radio interferometric measurement (RIM).

The difference in phase, Ap = pr—@4,, measured by receiver nodes R and A,
is a linear combination of the distances between the transmitters and receivers,

2
Ap = T(dMAz —da,a, +dar — dur) (mod 27),

where A is the wavelength of the carrier frequency, dy;r is the distance be-
tween the master node and target receiver node, da, g is the distance between
the assistant transmitter and the target receiver node, and dpra,, dara,, and
da, A, are the respective distances between all pairs of nodes in the array.
Note that the nodes in the array are equidistant from each other, and there-

fore dpra, — da,a, = 0,s0 the phase difference can be simplified:
27 :
Ap = T(dAlR_dMR) (mod 2m). (1)

We denote the distance difference da, g — dyr by da, mr and refer to it as
a t-range. From Equation (1), we can see that if —% < da,mr < %, the phase
difference will fall in the interval (—m, 7). When this is not the case, the possible
range of Ay will exceed 27, which results in a modulo 27 phase ambiguity. To
avoid this, we would like the maximum possible distance difference to be less
than -’% The maximum distance difference will occur when the receiver node
is collinear with the transmitters M and A;. da, mr then corresponds to the
distance between the master and assistant. Therefore, to eliminate the modulo
271 phase ambiguity, we require the distance between antennas in the array to
be less than half the wavelength of the carrier frequency.
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Having removed the modulo operator, we can rearrange Equation (1) so that
known values are on the right hand side.

Ao
da, MR = % (2)

The t-range d 4, mr defines an arm of a hyperbola that intersects the position
of node R, and whose asymptote passes through the midpoint of the line A M,
connecting the master and assistant nodes. Figure 3 illustrates such a hyperbola
with foci A; and M. The absolute value of the distance differences between the
foci and any point on a hyperbolic arm is constant, formally defined as

72 2
gL
a b2
where (z,y) are the coordinates of a point on the hyperbola, a is the distance
between the hyperbola center and the intersection H of the hyperbola with the
axis connecting the two foci, and b is the length of the line segment, perpendicular

to the axis connecting the foci, that extends from H to the asymptote.

~ R
. dAlR o /,'/
b'/ e
Ba/
A;/,’ C 8 Hf M
b \

oA,

Fig. 3. The t-range defines a hyperbola that intersects node R, and whose asymptote
passes through the midpoint of the two transmitters in the array.

Bearing Approximation. The hyperbola in Figure 3 is centered at O, and
the distance between O and either focus is denoted by c¢. Furthermore, it can
be shown that ¢ = a® + b? [20]. From the figure, we see that the bearing of
the asymptote is f = tan‘l(%). Therefore, in order to solve for 3, we must
determine the values of b and a.

We can solve for a by observing that

dar —dypr =da,y —dun

because, by definition, the distance differences between the foci and all points
on the hyperbola are constant. From Figure 3, we see that we can substitute
(¢c+a) for da, g and (¢ — a) for dyrpy, and therefore,
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da,r —dmr = (¢ +a) — (c —a) = 2a.

From Equation (2), we know the value of d4, g — dargr, which is the t-range, and
therefore a = d—"lz"ﬂ We can then solve for b, using b = v/¢? — a?. In terms of
known distances, the bearing of the asymptote is then defined as

4M N d41un "
2

(ﬂ;ﬂ) | N

In Figure 3, we see the case where d s, mr > 0, and the position of R lies on the
right arm of the hyperbola. If the phase difference is negative (i.e., pr < @a,)
then the position of R will lie on the left arm of the hyperbola. When this is the
case, 3 is taken clockwise, and we must adjust it by subtracting it from 7

The line Ay M connecting the two foci is called the transverse axis of the
hyperbola, and is a line of symmetry. This implies that although we know b, we
do not know its sign, because mirrored positions on either side of the transverse
axis will result in the same da,nr. Therefore, the asymptote bearing 3 we
obtained using this method could be either positive or negative. To find which
bearing is correct, we can switch the roles of the assistant nodes in the array and
perform another RIM. This will generate a different t-range, and hence another
hyperbolic arm with foci A and M.

Each hyperbola provides us with two angles +/3;, where /3; is the angle of the
asymptote with the transverse axis, A; M. Of course, these angles will be offset
from the global z-axis, because the orientation of A; M may not be 0. Adjusting
for this, one of the (1 bearings, and one of the [, bearings will point in the
same direction, which will approximate the actual bearing of R, as illustrated in
Figure 4. Due to the position difference between the centers of the two hyperbo-
las, we do not expect these two angles to be equal, therefore we define a small

\ L8 s J+£51
Py

_________
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Fig. 4. Determining the true bearing of R is accomplished by selecting +/3 or —/3 from
each master-assistant pair, such that the difference between the two angles is below
the threshold ez



