G5

Garland Science

Introduction to
Cell Mechanics and I
Mechanoblology

/

Christopher R. Jacobs
Hayden Huang
Ronald Y. Kwon




Introduction to Cell
Mechanics and
Mechanobiology

Christopher R. Jacobs
Hayden Huang
Ronald Y. Kwon

Garland Science
rrrrrrrrrrrrrrrrrrr



Garland Science

Vice President: Denise Schanck

Editor: Summers Scholl

Senior Editorial Assistant: Allie Bochicchio
Production Editor and Layout: Natasha Wolfe
Mlustrator: Laurel Muller, Cohographics
Cover design: Andrew Magee

Copyeditor: Christopher Purdon
Proofreader: Mary Curioli

Indexer: Indexing Specialists (UK) Ltd

©2013 by Garland Science, Taylor & Francis Group, LLC

This book contains information obtained from authentic and highly regarded sources. Every effort has been made to trace copyright holders
and to obtain their permission for the use of copyright material. Reprinted material is quoted with permission, and sources are indicated.

A wide variety of references are listed. Reasonable efforts have been made to publish reliable data and information, but the author and the
publisher cannot assume responsibility for the validity of all materials or for the consequences of their use. All rights reserved. No part of this
publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means—graphic, electronic, or mechanical,
including photocopying, recording, taping, or information storage and retrieval systems—without permission of the copyright holder.

ISBN 978-0-8153-4425-4

Library of Congress Cataloging-in-Publication Data

Jacobs, C. R. (Christopher R.)
Introduction to cell mechanics and mechanobiology/Christopher R. Jacobs, Hayden Huang, Ronald Y. Kwon.
p. cm.

Includes bibliographical references.

Summary: “Introduction to Cell Mechanics and Mechanobiology teaches advanced undergraduate students a quantitative understanding
of the way cells detect, modify, and respond to the physical properties within the cell environment. Coverage includes the mechanics of single
molecule polymers, polymer networks, two-dimensional membranes, whole-cell mechanics, and mechanobiology, as well as primer
chapters on solid, fluid, and statistical mechanics”-Provided by publisher.

ISBN 978-0-8153-4425-4 (pbk.)
I. Huang, Hayden. 1II. Kwon, RonaldY. III. Title.
[DNLM: 1. Cell Physiological Phenomena. 2. Biomechanics. QU 375]
572-dc23
2012018504

Published by Garland Science, Taylor & Francis Group, LLC, an informa business,
711 Third Avenue, New York, NY, 10017, USA, and 2 Park Square, Milton Park, Abingdon, OX14 4RN, UK.

Printed in the United States of America

1514 13 1211 10 9 8 76 54 3 21

Garland Science
Taylor & Francis Group

Visit our website at http://www.garlandscience.com



Introduction to Cell
Mechanics and
Mechanobiology



Preface

In recent years, mechanical signals have become widely recognized as being criti-
cal to the proper functioning of numerous biological processes. This has led to the
emergence of a new field called cellular mechanobiology, which merges cell biol-
ogy with various disciplines of mechanics (including solid, fluid, statistical, com-
putational, and experimental mechanics). Cellular mechanobiology seeks to
uncover the principles by which the sensation or generation of mechanical force
alters cell function. Introduction to Cell Mechanics and Mechanobiology presents
students from a wide variety of backgrounds with the physical and mechanical
principles underpinning cell and tissue behavior.

This textbook arose from a cell mechanics course at Stanford University first
offered by two of us in 2005. Over several iterations, we taught from a set of course
notes and chapter excerpts—having found no textbook to cover the necessary
breadth of topics. Our colleagues had similar experiences teaching with the same
adhoc approach, which convinced us of the need for a comprehensive instruc-
tional tool in this area. Another reason we felt compelled to write this text is that
cell mechanics provides an excellent substrate to introduce many types of
mechanics (solid, fluid, statistical, experimental, and even computational). These
topics are traditionally covered in separate courses with applications largely
focused on engineering structures. As authors, we have varied backgrounds, but
share a common fondness for the insights mechanical engineering brings to cell
biology.

Introduction to Cell Mechanics and Mechanobiology is intended for advanced
undergraduates and early graduate students in biological engineering and bio-
medical engineering, including those not necessarily in a biomechanics track. We
do not assume an extensive knowledge in any area of biology or mechanics. We do
assume that students have a mathematics background common to all areas of
engineering and quantitative science, meaning exposure to calculus, ordinary dif-
ferential equations, and linear algebra.

The field of cell mechanics encompasses advanced concepts, such as large defor-
mation mechanics and nonlinear mechanics. We do not expect our audience to
have a strong background in the advanced mathematics of continuum mechan-
ics. Our intent is to avoid graduate-level mathematics wherever possible. In our
approach, the treatment of tensor mathematics—central to large deformation
mechanics (common in cell mechanics)—poses unique difficulties. To show sim-
plified mathematical derivations measuring mechanical parameters in the context
of living cells, we present tensors “by analogy” as matrices, rather than introduc-
ing them in a fully rigorous fashion. For example, we skip index notation entirely.
Admittedly, this approach may be less satisfying to mechanicians, which we also
consider ourselves. However, we hope that the advantages of this approach will
outweigh our oversimplifications.

The book is grouped into two parts: (I) Principles and (1) Practices. We have writ-
ten the chapters to allow instructors flexibility in presentation, depending on the
level of students and the length of the course. After introducing cell mechanics as
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a framework in Chapter 1, we provide a review of cell biology in Chapter 2. The
next four chapters establish the necessary concepts in mechanics with enough
depth that the student attains a basic competency and appreciation for each topic.
Chapter 3 covers solid mechanics—including rigid and deformable bodies as well
as a short overview of large-deformation mechanics. Fluid mechanics (Chapter 4)
isimportant for cell mechanics not only in cytoplasmic flow, but also as a physical
signal that regulates cell mechanobiological behavior. Chapter 5 dives into statis-
tical mechanics, with descriptions of energy, entropy, and random walks, com-
mon themes for understanding the aggregate behavior of systems composed of
many objects. In Chapter 6, we describe experimental methods, an area that is
always changing, but is essential in demonstrating how theory may be reconciled
with actual experiments. These fundamentals in Part I are followed by cell
mechanics proper in Part II. Chapters 7-9 begin with a discussion of an aspect of
cell biology followed by analysis of the mechanics. We undertake polymer
mechanics in Chapter 7 from a continuum and a statistical viewpoint and exam-
ine situations in which both need to be considered simultaneously. These tools
are applied to individual cytoskeletal polymers as well as to other polymers such
as DNA. Polymer networks are presented in Chapter 8, with a focus on the role of
the cytoskeleton in regulating physical properties, such as red blood cell shape
and limitations on cell protrusion lengths. Chapter 9 examines the bilayer mem-
brane, from both the perspective of matter floating around within it (diffusion) as
well as a mechanical perspective of bending and stretching. The last two chapters
address mechanobiology. Chapter 10 is focused on cellular force generation and
the related processes of adhesion and migration. Chapter 11 discusses the process
of mechanosensing or mechanotransduction and intracellular signaling. These
last chapters do not have as much rigorous mechanical engineering mathematics,
but are an integral part of cell biomechanics.

Given the varied backgrounds of our students and the interdisciplinary nature of
the subject, we have attempted to provide some guidance on the treatment of
variables and units. At the start of the book, we present a master list of all the vari-
ables used in the text that specifies exactly what each variable is used for in a par-
ticular chapter. We have retained the “contextual” usage in each chapter, accepted
within each field, to prepare students for reading the literature. Three types of
boxes supplement the main text: “Advanced Material” challenges readers to think
critically and problem-solve; interesting and noteworthy asides are denoted as
“Nota Bene”; “Examples” provide in-depth solved calculations and explanations.
Each chapter concludes with a set of Key Concepts, Problems that can be used as
homework sets, and Annotated References that guide students for further study.

Online Resources

Accessible from www.garlandscience.com/cell-mechanics, Student and Instructor
Resource websites provide learning and teaching tools created for Introduction to
Cell Mechanics and Mechanobiology. The Student Resources site is open to every-
one, and users have the option to register in order to use book-marking and note-
taking tools. The Instructor’s Resource site requires registration; access is available
to instructors who have assigned the book to their course. To access the Instructor’s
Resource site, please contact your local sales representative or email science@gar-
land.com. Below is an overview of the resources available for this book. Resources
may be browsed by individual chapters and there is a search engine. You can also
access the resources available for other Garland Science titles.

For students:

o Computer simulation modules in two formats: ready-to-run simulations that simu-
late the mechanical behavior of cells and tutorial MATLAB modules on simulation
of cell behavior with the finite element method.

+ Color versions of several figures are available, indicated by the figure legend in the
text.



« A handful of animations and videos dynamically illustrate important concepts
from the book.
« Solutions to selected end-of-chapter problems are available to students.

For instructors:

« In addition to color versions of several figures, all of the images from the book are
available in two convenient formats: Microsoft PowerPoint® and JPEG. They have
been optimized for display on a computer. Figures are searchable by figure number,
figure name, or by keywords used in the figure legend from the book.

» The animations and videos that are available to students are also available on the
Instructor’s Resource website in two formats. The WMV-formatted movies are cre-
ated for instructors who wish to use the movies in PowerPoint presentations on
computers running Windows®; the QuickTime®-formatted movies are for use in
PowerPoint for Apple computers or Keynote® presentations. The movies can easily
be downloaded to your personal computer using the “download” button on the
movie preview page.

« Solutions to selected end-of-chapter problems are available to qualified adopters.

The origin of the book is rooted in teaching from sections of outstanding books
by David H. Boal, Jonathon Howard, and Howard C. Berg. We thank Roger
Kamm, Vijay Pande, and Andrew Spakowitz, who taught some of us at various
times and have unselfishly shared course materials and handouts and, in the
case of Dr. Kamm, unpublished drafts of his own textbook. With their permis-
sion, we have incorporated their approach to some topics in Chapters 4, 5, 7, 8,
and 9 and adapted several problems into sections of our book, We are grateful
for their amazing willingness to share their intellectual product in the name of
improving the educational experience of students around the world. We also
thank reviewers Roland R. Kaunas and Peter J. Butler, who shared notes from
their own courses in cell mechanics. We are profoundly appreciative of the tire-
less work of those who have preceded us, without whom we never could have
completed this task. We thank the additional reviewers of the book, Dan Fletcher,
Christian Franck, Wonmuk Hwang, Paul Janmey, Yuan Lin, Lidan You, and
Diane Wagner, for their valuable insight and critiques of our drafts. We are also
grateful to Summers Scholl and the editorial and production teams at Garland
who took a chance on three textbook neophytes and guided us unerringly
through uncharted waters. Finally we are each deeply indebted to our families,
including Roberta, Jolene, VH, YYH, LHH, Joyce, Melody, Tae, and Cynthia.
Without your support, patience, and understanding—as this project took us
away from you on so many nights and weekends—we never could have contem-
plated this undertaking, much less completed it.

Christopher R. Jacobs
Hayden Huang
Ronald R. Kwon
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of force on dissociation rate

Shear enhances neutrophil adhesion—
up to a point

Migration

Cell migration can be studied in vitro
and in vivo

Cell locomotion occurs in distinct steps

Protrusion is driven by actin
polymerization

Actin polymerization at the leading edge:
involvement of Brownian motion?

Cell motion can be directed by external cues

Cell migration can be characterized
by speed and persistence time

Directional bias during cell migration
can be obtained from cell trajectories

Contraction

Muscle cells are specialized cells for
contractile force generation

Studying cardiac function gave early
insight into muscle function

The skeletal muscle system generates
skeletal forces for ambulation and mobility

The Hill equation describes the relationship
between muscle force and velocity

Non-muscle cells can generate
contractile forces within stress fibers

Stress fiber pre-strain can be measured
from buckling behavior

Myosin cross-bridges generate sliding
forces within actin bundles

Myosin molecules work together to
produce sliding

The power-stroke model is a mechanical
model of actomyosin interactions
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CHAPTER 11: Cellular
Mechanotransduction
11.1 Mechanical signals

11.2

11.3

Vascular endothelium experiences
blood-flow-mediated shear stress

Lumen-lining epithelial cells are
subjected to fluid flow

Fluid flow occurs in musculoskeletal tissues

Fluid flow during embryonic development
regulates the establishment of left-right
asymmetry

Strain and matrix deformation function
as regulatory signals

Smooth muscle cells and cardiac
myocytes are subjected to strain in
the cardiovascular system

Cellular strain in the musculoskeletal
system is dependent on tissue stiffness
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Stereocilia are the mechanosensors of the ear

Specialized structures are used in touch
sensation

Primary cilia are nearly ubiquitous, but
functionally mysterious

Cellular adhesions can sense as well as
transmit force

The cytoskeleton can sense mechanical loads

Mechanosensing can involve the
glycoproteins covering the cell

The cell membrane is ideally suited
to sense mechanical loads

Lipid rafts affect the behavior of proteins
within the membrane

Initiation of intracellular signaling
Ion channels can be mechanosensitive

Hydrophobic mismatches allow the
mechanical gating of membrane channels

Mechanical forces can expose
cryptic binding sites

Bell’s equation describes protein
unfolding kinetics

Molecular conformation changes
can be detected fluorescently
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Mitogen-activated protein kinase activity
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stimulation
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