s o

/;TH'E&Qi?Y/IN/PRACTICE

Dl DL

s 4 (‘3‘

1,

T HEZ AR mogm)

The Art of Concurrency

Clay Breshears

O’REILLY"

Beijing + Cambridge - Farnham - Kdln - Sebastopol - Taipei - Tokyo
O'Reilly Media, Inc. &4 A& & X % & gt k&
FrEAFH R

BEER®KE (CIP) HiFE

HATHFERZAR: F3/ () MEEET (Breshears, C.)
. WHA . —mR: REKRFHRE, 20101

5453 The Art of Concurrency

ISBN 978-7-5641-1929-4

1. 3F 0. A IR -3 IV.TP311.52
H [R A [51 CIP At (2009) 58 206908 5

(LA RBURZE R A R ID
¥ 10-2009-248 5

©2009 by O'Reilly Media, Inc.

Reprint of the English Edition, jointly published by O'Reilly Media, Inc. and Southeast University
Press, 2009. Authorized reprint of the original English edition, 2009 O'Reilly Media, Inc., the

owner of all rights to publish and sell the same.

All rights reserved including the rights of reproduction in whole or in part in any form.

¥ R il O'Reilly Media, Inc. & & 2009,

EXHPM G &K B ok F A IR 2009, 3% e AR &Y BR A 4K R AT 2] b MRAR A4 B ARG TR B
—— O'Reilly Media, Inc. #5# 7,

WAFTA , AFHEHT, AHAETIHSF 2R RFAUETH XEH,

HATHEZA GEEIR)

AR & 4T ARm K%M R

oo kb BRI 2S B4 : 210096
AR A L I

W fik: http://press.seu.edu.cn

HLF iR : press@seu.edu.cn

EN Fill . 4% EDRIA PR 2 A

7 A, 78T Z A x 9802 K 16 FFA

Ef gk 19 Elgk

F . 319FF

i . 2010461 A% 1R

EN K. 2010 42 1 HEE 1 ZRENAI
+ 2. ISBN 978-7-5641-1929-4

ED . 1~1600 fif
£ #r. 48.00C ()
ARE AN R AR, EEESIRERS A, BiE (fFH): 025-83792328

To my parents, for all their love, guidance,
and support.

. .
i

-
-

.

-

.

-

i
4

PREFACE

Why Should You Read This Book?

MULTICORE PROCESSORS MADE A BIG SPLASH WHEN THEY WERE FIRST INTRODUCED. Bowing to
the physics of heat and power, processor clock speeds could not keep doubling every 18 months
as they had been doing for the past three decades or more. In order to keep increasing the
processing power of the next generation over the current generation, processor manufacturers
began producing chips with multiple processor cores. More processors running at a reduced
speed generate less heat and consume less power than single-processor chips continuing on
the path of simply doubling clock speeds.

But how can we use those extra cores? We can run more than one application at a time, and
each program could have a separate processor core devoted to the execution. This would give
us truly parallel execution. However, there are only so many apps that we can run
simultaneously. If those apps aren’t very compute-intensive, we’re probably wasting compute
cycles, but now we’re doing it in more than one processor.

Another option is to write applications that will utilize the additional cores to execute portions
of the code that have a need to perform lots of calculations and whose computations are
independent of each other. Writing such programs is known as concurrent programming. With
any programming language or methodology, there are techniques, tricks, traps, and tools to
design and implement such programs. I've always found that there is more “art” than “science”
to programming. So, this book is going to give you the knowledge and one or two of the “secret
handshakes” you need to successfully practice the art of concurrent programming.

In the past, parallel and concurrent programming was the domain of a very small set of
programmers who were typically involved in scientific and technical computing arenas. From
now on, concurrent programming is going to be mainstream. Parallel programming will
eventually become synonymous with “programming.” Now is your time to get in on the
ground floor, or at least somewhere near the start of the concurrent programming evolution.

Who Is This Book For?

This book is for programmers everywhere.

I work for a computer technology company, but I'm the only computer science degree-holder
on my team. There is only one other person in the office within the sound of my voice who
would know what I was talking about if I said I wanted to parse an LR(1) grammar with a
deterministic pushdown automata. So, CS students and graduates aren’t likely to make up the
bulk of the interested readership for this text. For that reason, I've tried to keep the geeky CS
material to a minimum. I assume that readers have some basic knowledge of data structures
and algorithms and asymptotic efficiency of algorithms (Big-Oh notation) that is typically
taught in an undergraduate computer science curriculum. For whatever else I've covered, I've
tried to include enough of an explanation to get the idea across. If you’ve been coding for more
than a year, you should do just fine.

viii PREFACE

I've written all the codes using C. Meaning no disrespect, 1 figured this was the lowest common
denominator of programming languages that supports threads. Other languages, like Java and
C#, support threads, but if I wrote this book using one of those languages and you didn’t code
with the one I picked, you wouldn’t read my book. I think most programmers who will be able
to write concurrent programs will be able to at least “read” C code. Understanding the
concurrency methods illustrated is going to be more important than being able to write code
in one particular language. You can take these ideas back to C# or Java and implement them
there.

I'm going to assume that you have read a book on at least one threaded programming method.
There are many available, and I don’t want to cover the mechanics and detailed syntax of
multithreaded programming here (since it would take a whole other book or two). I'm not
going to focus on using one programming paradigm here, since, for the most part, the
functionality of these overlap. I will present a revolving usage of threading implementations
across the wide spectrum of algorithms that are featured in the latter portion of the book. If
there are circumstances where one method might differ significantly from the method used,
these differences will be noted.

I've included a review of the threaded programming methods that are utilized in this book to
refresh your memory or to be used as a reference for any methods you have not had the chance
to study. I'm not implying that you need to know all the different ways to program with
threads. Knowing one should be sufficient. However, if you change jobs or find that what you
know about programming with threads cannot easily solve a programming problem you have
been assigned, it’s always good to have some awareness of what else is available—this may
help you learn and apply a new method quickly.

What's in This Book?

Chapter 1, Want to Go Faster? Raise Your Hands if You Want to Go Faster/, anticipates and
answers some of the questions you might have about concurrent programming. This chapter
explains the differences between parallel and concurrent, and describes the four-step threading
methodology. The chapter ends with a bit of background on concurrent programming and
some of the differences and similarities between distributed-memory and shared-memory
programming and execution models.

Chapter 2, Concurrent or Not Concurrent?, contains a lot of information about designing
concurrent solutions from serial algorithms. Two concurrent design models—task
decomposition and data decomposition—are each given a thorough elucidation. This chapter
gives examples of serial coding that you may not be able to make concurrent. In cases where
there is a way around this, I've given some hints and tricks to find ways to transform the serial
code into a more amenable form.

Chapter 3, Proving Correctness and Measuring Performance, first deals with ways to
demonstrate that your concurrent algorithms won’t encounter common threading errors and

PREFACE ix

to point out what problems you might see (so you can fix them). The second part of this chapter
gives you ways to judge how much faster your concurrent implementations are running
compared to the original serial execution. At the very end, since it didn’t seem to fit anywhere
else, is a brief retrospective of how hardware has progressed to support the current multicore
processors.

Chapter 4, Eight Simple Rules for Designing Multithreaded Applications, says it all in the title.
Use of these simple rules is pointed out at various points in the text.

Chapter 5, Threading Libraries, is a review of OpenMP, Intel Threading Building Blocks, POSIX
threads, and Windows Threads libraries. Some words on domain-specific libraries that have
been threaded are given at the end.

Chapter 6, Parallel Sum and Prefix Scan, details two concurrent algorithms. This chapter also
leads you through a concurrent version of a selection algorithm that uses both of the titular
algorithms as components.

Chapter 7, MapReduce, examines the MapReduce algorithmic framework; how to implement
a handcoded, fully concurrent reduction operation; and finishes with an application of the
MapReduce framework in a code to identify friendly numbers.

Chapter 8, Sorting, demonstrates some of the ins and outs of concurrent versions of Bubblesort,
odd-even transposition sort, Shellsort, Quicksort, and two variations of radix sort algorithms.

Chapter 9, Searching, covers concurrent designs of search algorithms to use when your data
is unsorted and when it is sorted.

Chapter 10, Graph Algorithms, looks at depth-first and breadth-first search algorithms. Also
included is a discussion of computing all-pairs shortest path and the minimum spanning tree
concurrently.

Chapter 11, Threading Tools, gives you an introduction to software tools that are available and
on the horizon to assist you in finding threading errors and performance bottlenecks in your
concurrent programs. As your concurrent code gets more complex, you will find these tools
invaluable in diagnosing problems in minutes instead of days or weeks. '

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, file extensions, pathnames,
directories, and Unix utilities.

Constant width
Indicates commands, options, switches, variables, attributes, keys, functions, types,
classes, namespaces, methods, modules, properties, parameters, values, objects, events,

x PREFACE

event handlers, XML tags, HTML tags, macros, the contents of files, or the output from
commands.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values.

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in this book
in your programs and documentation. You do not need to contact us for permission unless
you're reproducing a significant portion of the code. For example, writing a program that uses
several chunks of code from this book does not require permission. Selling or distributing a
CD-ROM of examples from O’Reilly books does require permission. Answering a question by
citing this book and quoting example code does not require permission. Incorporating a
significant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title, author,
publisher, and ISBN. For example: “ The Art of Concurrencyby Clay Breshears. Copyright 2009
Clay Breshears, 978-0-596-52153-0.”

If you feel your use of code examples falls outside fair use or the permission given above, feel
free to contact us at permissions@oreilly.com.

Comments and Questions

Please address comments and questions concerning this book to the publisher:

O'Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://www.orellly.com/catalog/9780596 521530
To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

PREFACE xi

For more information about our books, conferences, Resource Centers, and the O'Reilly
Network, see our website at:

http://www.oreilly.com

Safari® Books Online

+ When you see a Safari® Books Online icon on the cover of your favorite

Satgom technology book, that means the book is available online through the O'Reilly
Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you easily search
thousands of top tech books, cut and paste code samples, download chapters, and find quick
answers when you need the most accurate, current information. Try it for free at http://
my.safaribooksonline.com/.

Acknowledgments

I want to give my thanks to the following people for their influences on my career and support
in the writing of this book. Without all of them, you wouldn’t be reading this and I'd probably
be flipping burgers for a living.

To JosepH SARGENT and STANLEY CHASE for bringing Colossus: The Forbin Project to the big
screen in 1970. This movie was probably the biggest influence in my early years in getting me
interested in computer programming and instilling within me the curiosity to figure out what
cool and wondrous things computers could do.

To Rocer WINK for fanning the flame of my interest in computers, and for his 30-plus years
of friendship and technical knowledge. He taught me Bubblesort in COBOL and is always
working on something new and interesting that he can show off whenever we get the chance
to meet up. '

To BiLL MAGro and Tom CoRrTESE for being my first manager at Intel and one of my first
teammates at the Intel Parallel Applications Center. Working at the PAC gave me the chance
to get my “hands dirty” with lots of different parallel codes, to interact with applications and
customers from many different technical and commercial areas, and to learn new methods and
new threading libraries. It was a “dream come true” job for me.

To Jerry BAuGH, Bos CHESEBROUGH, JEFF GALLAGHER, RAvI MANOHAR, MIKE PEARCE,
MicHAEL WRINN, and Hua (SELwYN) You for being fantastic colleagues at Intel, past and
present, and for reviewing chapters of my book for technical content. I've relied on every one
of these guys for their wide range of technical expertise; for their support, patience, and
willingness to help me with my projects and goals; for their informed opinions; and for their
continuing camaraderie throughout my years at Intel.

xii PREFACE

To my editor, Mike LoukIDES, and the rest of the staff at O’Reilly who had a finger in this
project. I couldn’t have done anything like this without their help and advice and nagging me
about my deadlines.

To GERGANA SLAVOVA, who posed as my “target audience” and reviewed the book from cover
to cover. Besides keeping me honest to my readers by making me explain complex ideas in
simple terms and adding examples when I'd put too many details in a single paragraph, she
peppered her comments with humorous asides that broke up the monotony of the tedium of
the revision process (and she throws a slammin’ tea party, too).

To HENRY GABB for his knowledge of parallel and multithreaded programming, for convincing
me to apply for a PAC job and join him at Intel back in 2000, and for his devotion to SEC
football and the Chicago Cubs. During the almost 15 years we’ve known each other, we've
worked together on many different projects and we’ve each been able to consult with the other
on technical questions. His knowledge and proficiency as a technical reviewer of this text, and
many other papers of mine he has so kindly agreed to review over the years, have improved
my written communication skills by an order of magnitude.

And finally, a big heartfelt “thank you” to my patient and loving wife, LORNA, who now has
her husband back.

PREFACE xiii

About the Author

Dr. Clay Breshears has been with Intel Corporation since September 2000. He started as a senior
parallel application engineer at the Intel Parallel Applications Center in Champaign, Mlinois,

implementing multithreaded and distributed solutions in customer applications. Clay is
currently a courseware architect, specializing in multicore and multithreaded programming
and training. Before joining Intel, Clay was a research scientist at Rice University helping
Department of Defense researchers make the best use of the latest High Performance
Computing (HPC) platforms and resources. Clay received his Ph.D. in computer science from
the University of Tennessee, Knoxville, in 1996, but he has been involved with parallel
computation and programming for over 20 years; six of those years were spent in academia at
Eastern Washington University and the University of Southern Mississippi.

Colophon

The cover image is an aerial view of wheat-harvesting combines from Getty Images. The cover
fonts are Akzidenz Grotesk and Orator. The text font is Adobe’s Meridien; the heading font is
ITC Bailey.

O'Reilly Media, Inc. 43

O'Reilly Media, Inc. &1t E7E UNIX, X, Internet FlH i FF i R S EBSH AL
TFHAL IR 2 5], RIS BRHL AR S8

M B 4HE (The Whole Internet User's Guide & Catalog) (##0 %24\ 3t B B iEiE 4
ST HAEREERN SOAN Z—) B GNN (HFA Internet [] ARG W 36), FEF
WebSite (55—~ £ HPCHI Web iR 55 B8 ff),, O'Reilly Media, Inc. — H AL F Internet
K RHIBCHT

T2 BIERREEEB, OReilly Media, Inc. & BB EHIHENEBHIRE — & —
AHE—RER . 5k Z B FHLE B HARPEAILL, O'Reilly Media, Inc. L R/E
M HEH T L H R, XA OReilly Media, Inc. A T — 43R5 A5 [T Hofth H AR 75
MR 778t . O'Reilly Media, Inc. B HI4a5E A RUARTES RFRF R, SE R TR
M ALK, O'Reilly Media, Inc. 3554 1 £ B & MIVEH B —— 14 & B AR 45
BHBARER. BWEK, MBESHSENE, OReilly Media, Inc. f&k b1 K i
i E$5. HA O'Reilly Media, Inc. B#ME5IHENLL RBERE, FiLLO'Reilly
Media, Inc. ZmE i3 L EEEE(24 B4,

tH hig 15t A

B & THRALBOR B BCRARFITZ B, AR IEFE D A — A BRI Brt], TH 5
P ARH R 2 AT Tolk A= 7=, e alki& shAn B A TG AR ok T BRI . 2R,
THRLHL AT e A S 7 38 2 DRt AR T JE Sy, A T B B AR B 5 — i]
TR E MR AT IR, ARTE K # AL Fn3E] O'Reilly Meida, Inc iE S, KB
225 A W RR AT AR SE E R TSR A B AR, LU ENAR 3035 i ik
HSCRIIE R RIREG 1E Horb, SEENRR B ok 5 EISME S “RA” Hikk, FFE IR
HE%” RIATEHE .

AT E et 75 22, BT 5| RO 5 FERE X E AR AT OB AR A . BHBFLARIBFZEA
i B A2 5 2R AR B B, et B A HERHLES AR 0 & A P et . O 22
R S SRR WA I

Bt IR ENRR B 45, A4

o (FLSCH SN Haskell) (FZENAR)

o (EABMUMEITRY (EIR)

o (Java Web iR%5: & 5iafr) (EEIRR)
o (FHTHERERY (FEHR)

o (ffiFH Perl SLBl RGEE T A B 3 ZhRY GZENAR)
o (Javai{HEARS E MY (RER)

o (BEARMMLERY (FEIR)

e (Ruby HfELE) GZEIR)

o (EBEMEEY (EENRR)

e (IFENIFiAF, Cookbook) (FZENAR)

o (flex 5 bison) (FZENER)

CONTENTS

PREFACE vii
WANT TO GO FASTER? RAISE YOUR HANDS IF YOU WANT TO GO FASTER! 1
Some Questions You May Have 2
Four Steps of a Threading Methodology 7
Background of Parallel Algorithms 12
Shared-Memory Programming Versus Distributed-Memory Programming 15
This Book’s Approach to Concurrent Programming 19
CONCURRENT OR NOT CONCURRENT? 21
Design Models for Concurrent Algorithms 22
What’s Not Parallel 42
PROVING CORRECTNESS AND MEASURING PERFORMANCE 49
Verification of Parallel Algorithms 50
Example: The Critical Section Problem 53
Performance Metrics (How Am | Doing?) 66
Review of the Evolution for Supporting Parallelism in Hardware 71
EIGHT SIMPLE RULES FOR DESIGNING MULTITHREADED APPLICATIONS 73
Rule 1: identify Truly Independent Computations 74
Rule 2: Implement Concurrency at the Highest Level Possible 74
Rule 3: Plan Early for Scalability to Take Advantage of Increasing Numbers of Cores 75
Rule 4: Make Use of Thread-Safe Libraries Wherever Possible 76
Rule 5: Use the Right Threading Model 77
Rule 6: Never Assume a Particular Order of Execution 77
Rule 7: Use Thread-Local Storage Whenever Possible or Associate Locks to Specific Data 78
Rule 8: Dare to Change the Algorithm for a Better Chance of Concurrency 79
Summary 80
THREADING LIBRARIES 81
Implicit Threading 82
Explicit Threading 88
What Else Is Out There? 92
Domain-Specific Libraries 92
PARALLEL SUM AND PREFIX SCAN 95
Parallel Sum 96
Prefix Scan 103
Selection 112
A Final Thought 123

10

11

vi

MAPREDUCE

Map As a Concurrent Operation
Reduce As a Concurrent Operation

Applying MapReduce

MapReduce As Generic Concurrency

SORTING
Bubblesort

0Odd-Even Transposition Sort

Shellsort
Quicksort
Radix Sort

SEARCHING
Unsorted Sequence
Binary Search

GRAPH ALGORITHMS
Depth-First Search
All-Pairs Shortest Path
Minimum Spanning Tree

THREADING TOOLS
Debuggers

Performance Tools
Anything Else Out There?
Go Forth and Conquer

GLOSSARY
PHOTO CREDITS

INDEX

CONTENTS

125
127
129
138
143

145
146
153
162
169
182

201
202
210

221
224
240
245

257
258
260
262
263

265

275

277

=3

|
|
SRR —
|
|

b) [P
;. . gl 2
.

ﬂ%ﬁJ .

by

d

.
.

-0

=

CHAPTER ONE

Want to Go Faster? Raise Your Hands
if You Want to Go Faster!

